
A Dependency Constraint Grammar for Esperanto

Eckhard Bick
Institute of Language and Communication

University of Southern Denmark

eckhard.bick@mail.dk

Abstract

This paper presents a rule-based formalism
for dependency annotation within the
Constraint Grammar framework,
implemented as an extension of the open
source CG3 compiler. As a proof of
concept we have constructed a complete
dependency grammar for Esperanto,
building on morphosyntactically annotated
input from the EspGram parser. The system
is described and evaluated on a test corpus.
With a 4% error rate, and most errors
caused by simple error propagation from
the morphosyntactic input module, our
system has proven robust enough to be
integrated into real life applications, such
as the Lingvohelpilo spell- and grammar-
checker.

1 Introduction

Traditionally, Constraint Grammar (Karlsson
et al. 1995) as a descriptive system, has
regarded syntax as an extension of
morphology, with a shallow syntax based on
function tags built on case markers, word
order and contextual constraints. This
approach to syntax efficiently exploits
lexico-morphological clues, and the tag-
based annotation allows the grammarian to
treat syntax as a disambiguation technique
similar to the one used for morphological
disambiguation. However, function is only
an indirect marker for the relation between
words, and it is difficult to express the
structural relations of deeper syntax in this
fashion. As a first approximation,
dependency direction markers were used for
the dependents in noun phrases (e.g. @N> or
@>N), adjective phrases (@A> or @>A)

and prepositional phrases (@P<), a
descriptive principle later generalized to
clause level functions and subclauses (Bick
2000). In this convention, some obvious
underspecifications arise, such as the
distinction between short and long
attachment in np's, and the scope of
coordinators. Nevertheless, two different
methods were developed to create full
syntactic trees from shallow CG function
tags. The first (Bick 2003) uses higher level
phrase structure grammars with function tags
as terminals, and resolves
underspecifications in a generative way. The
second, and more robust (Bick 2005), uses
ordinary CG rules to add secondary
attachment markers (e.g. <np-close>, <np-
long>, <co-acc>, <cjt-first>) to resolve
underspecification, and creates dependency
trees through successive attachment rules.
However, the method used an external
formalism, with a specially designed
dependency rule compiler that also handled
issues like uniqueness, circularity and
coordination chains.

This paper describes an effort to move this
last, tree-building step into the realm of
Constraint Grammar proper, thus allowing
the user to exploit CG's powerful contextual
methodology in the process, to better
integrate dependency and functional syntax
and to achieve some control over
dependency interaction not fully
implementable in an the external formalism.
The new CG extension was then used to
create a dependency CG grammar for
Esperanto, and it is this grammar that will be
described and evaluated here. The module

deep linguistic processing, and can thus be
seen as facilitation stepping stone both for
further, syntax-dependent annotation (e.g.
anaphora, semantic roles) and for various
applicative purposes such as machine
translation. Currently, the grammar is used
in the newly-developed Esperanto grammar
checker, Lingvohelpilo
(http://lingvohelpilo.ikso.net/), where it
provides important contextual information
for the checking of accusative/nominative
case endings and transitivity affixes, as well
as for the identification of long-distance
agreement errors, e.g. between subject and
subject complement.

2 The formalism

In order to accommodate for dependency, 2
new operators, SETPARENT and
SETCHILD, were introduced to
GrammarSoft's open-source CG3 compiler
(Didriksen 2007), establishing dependency
arcs from daughter to mother, or mother to
daughter, respectively, addressing one in the
SETPARENT/SETCHILD field and the
other in a TO field. Both fields of the rule
can be independently conditioned with CG
contexts in the usual way. The first field
works like the TARGET of a MAPping rule,
while the TO-end of the dependency is
specified by a context condition itself – as
seen from the TARGET position. In the case
of a LINKed condition, the attachment point
can be marked (with a special A operator) as
any of the individual contexts checked and
“passed”. As a default, the dependency arc
will attach to the last condition of the LINK
chain if it can be instantiated. As in the older,
external dependency compiler, dependency
arcs are expressed as number tokens of the
type #n->m, where n is the token ID of the
daughter and m the token ID of the mother.
Internally, the CG3 compiler uses unique,
running IDs (necessary for cross-sentence
relations such as anaphora or discourse
relations), but in standard dependency
output, sentence windows boundaries are
respected, using relative IDs. The notation is
information equivalent to constituent tree

structures, and has been successfully
converted into various exchange formats,
such as TIGER xml and the VISL cross-
language format (constituent trees), as well
as MALT xml and CoNNL field format
(dependency).

The rule below is an example of a
dependency-creating rule for prenominal
dependents (@>N), attaching to np-heads
(@NP-HEAD) or nouns in the nominative
(N NOM), to the right (*1).

(a) SETPARENT @>N TO (*1 @NP-HEAD
OR (N NOM) BARRIER PRP) ;

Once established, dependency arcs can be
used by later rules – even by other
dependency-mapping rules – using three
types of dependency relators: p (parent), c
(child) and s (sibling). The p-, c- and s-
relators replace what would otherwise be
position markers in a traditional CG context.
Thus, rule (a) exploits semantic prototype
roles to select +HUM subjects in the
presence of cognitive verbs, while (b)
implements the syntactic uniqueness
principle for direct objects (@ACC).

(a) SELECT (%hum) (0 @SUBJ) (p <Vcog>)
(b) SELECT (@ACC) (NOT s @ACC)
(c) ... (*-1 N LINK c DEF) -> definite np

recognized through dependent
(d) ADD (§AG) TARGET @SUBJ (p V-HUM

LINK c @ACC LINK 0 N-NON-HUM) ;

Rule (c) is an example of a rule context used
to recognize a definite np through its
determiner, and (d) assigns the semantic role
tag of agent (§AG) to subjects of “human”
verbs with a non-human direct objects.

3 The Esperanto grammar

The preposition barrier (PRP) in the np rule
in the last section is a sensible safety
measure for English and French, but fails to
account for pre-nominal pp's as they do
occur in e.g. Esperanto and German. The
next rule therefore allows prenominals to
search right (**1) across the first np-head to

a later one that is not part of a prenominal pp
(as implied by @P<). Note that the SET
target has its own condition excluding targets
that already have a parent (using the (*)
convention for “any tag”). Since rule
application order supersedes token order, this
will have the effect of not undoing the pp-
free prenominal attachments already mapped
by the first rule.

SETPARENT @>N (NOT p (*))
TO (**1 @NP-HEAD OR (N NOM))
(NOT 0 @P<) ;

At the clause level, it is a fair assumption
that all left-pointing functions attach to the
closest main verb (&MV), unless an
intervening subclause ending is marked by
punctuation (CLB):

SETPARENT @<FUNC
TO (*-1 &MV BARRIER CLB) ;

For right-pointing functions (@FUNC>), the
blocking condition is a subclause
“complementizer” (relative/interrogative
pronoun or a subordinating conjunction),
which – unlike English - is an obligatory
feature in Esperanto. In a subsequent rule,
long-distant attachment across relative
clauses can be performed for still unattached
subjects (NOT p (V)), by linking to the next
main verb that does not already have a
subject (NOT c @SUBJ>):

SETPARENT @SUBJ> (NOT p (V))
TO (**1 &MV)
(*-1 NON-V LINK NOT 1 PCP)
(NOT c @SUBJ>)

Note the additional context condition in the
TO field that identifies the first verb in a
possible verb chain and conditions it as not
being a participle – since participle clauses
don't have left subjects.

In our grammar, coordination is handled as
“parallel” attachment, not chained Mel'cuk-
style, and in the absence of uniqueness-
demanding contexts, ordinary attachment
rules will therefore handle coordination, too.

However, the clause boundary barrier
discussed before poses a problem where a
chain of conjuncts contains not only a
coordinator, but also commas. Therefore, a
somewhat more complicated rule becomes
necessary to attach comma-isolated
conjuncts:

SETPARENT $$@FUNC (NOT p (V))
TO (*-1 IT BARRIER NON-PRE-N/ADV
LINK *-1 $$@FUNC BARRIER @FUNC
LINK p (V)) ;

This rule exploits the new uniqueness feature
in CG3 to attach any as yet unattached
function if the same function ($$@FUNC)
can be found to the left of an immediately
adjacent (BARRIER NON-PRE-N/ADV)
iterator (IT = coordinator or comma), with
no other functions in between (BARRIER
@FUNC). The dependency head will be the
mother (p V) of the same-function
antecedent found. Further rules, not
discussed here, attach the coordinator token
itself, and assign secondary conjunct tags to
all conjuncts, in order to distinguish between
first and later conjuncts should the need for a
Mel'cuk-style transformation arise.

4 Evaluation

Compared to the complexity of
morphological and syntactic CGs, our
dependency CG module is strikingly rule
efficient, achieving robust annotation with
just 66 rules, compared to the thousands of
rules in lower-level CGs, and the couple of
hundred rules in a CG-based PSG. Of course,
it has to be born in mind, that our rules rely
heavily on syntactic functions and
attachment direction markers introduced by
preceding CG modules. Also, at the time of
writing, we have not yet incorporated the
distinction between close and long
postnominal attachment, ellipsis and quoted
sentences which will unavoidably add to the
number of rules.

Speedwise, CG-dependency is also quite
efficient. A 75.000 word corpus consisting of
50% news magazine text and 50% classical

texts, was analyzed with the EspGram tagger
(Bick 2007) at the syntactic-functional level,
and the annotated corpus was then tagged
with our dependency CG on a 2.4 GHz
laptop. In this experiment, the analysis chain
up to the syntactic function level ran at 72
words/s, while the dependency level alone
ran at 6336 words/s, using 10.2 % of overall
processing time. Compared to the external
dependency system (608 words/s), this
implies a speed improvement by almost one
order of magnitude.

A rough inspection of annotation results for a
sample of 1000 words indicate an overall
error rate for the dependency annotation of
about 4%. Of these, about half were
attachment failures (no mothernode for non-
topnode functions), half were wrong
attachments (wrong daughter-mother
relation). With most errors being caused by
syntactic-function errors in the input, the
error rate of the dependency module itself
was very low, under 1%.

5 Conclusion and outlook

Given the necessary formal changes to the
CG compiler software, it appears to be
feasible, even with a relatively small set of
rules, to handle the creation of dependency
tree structures for CG-analyzed input within
the CG formalism itself. Our experiments
with such a grammar for use in an Esperanto
spell- and grammar-checker produced robust
results, both quantitatively and qualitatively.
In particular, the dependency module proved
to be considerably more robust than the
syntactic function module, inheriting most of
its errors from the former. We therefore
believe that CG dependency modules can be
created with comparatively little effort, to
turn existing CG function annotations into
dependency treebanks without substantial
loss of information. Future research should
allow us to shed light on the question to what
degree our dependency grammar, given a
compatible set of morphological and
syntactic input tags, is language independent
- as the size and simple nature of our rule set

indicates.

References

Bick, Eckhard (2000), “The Parsing System
PALAVRAS - Automatic Grammatical Analysis of
Portuguese in a Constraint Grammar Framework”,
Aarhus: Aarhus University Press

Bick, Eckhard. (2003) A CG & PSG Hybrid Approach
to Automatic Corpus Annotation, In: Kiril Simow
& Petya Osenova (eds.), Proceedings of
SProLaC2003 (at Corpus Linguistics 2003,
Lancaster), pp. 1-12

Bick, Eckhard. (2005) “Turning Constraint Grammar
Data into Running Dependency Treebanks”. In:
Civit, Montserrat & Kübler, Sandra & Martí, Ma.
Antònia (red.), Proceedings of TLT 2005 (4th
Workshop on Treebanks and Linguistic Theory,
Barcelona, December 9th - 10th, 2005), pp.19-27

Bick, Eckhard (2007), Tagging and Parsing an
Artificial Language: An Annotated Web-Corpus of
Esperanto, In: Proceedings of Corpus Linguistics
2007, Birmingham, UK. Electronically published
at (http://ucrel.lancs.ac.uk/publications/CL2007/,
Nov. 2007)

Didriksen, Tino (2003). “Constraint Grammar
Manual”, http://beta.visl.sdu.dk/cg3/single/

Karlsson, Fred et al. (1995): Constraint Grammar - A
Language-Independent System for Parsing
Unrestricted Text. Natural Language Processing,
No 4. Berlin & New York: Mouton de Gruyter.

Appendix: Annotation sample

Post 12 jaroj da reformoj, la efikeco de la ĉeĥa
ekonomio ne signife transpaŝas la nivelon atingitan en
la jaro 1989.
(Ater 12 years of reforms, the efficiency of the chech
economy has not significantly surpassed the level
reached in [the year of] 1989,)

Post [post] <*> PRP @ADVL> #1->14
12 [12] <card> <cif> NUM P @>N #2->3
jaroj [jaro] <dur> <per> N P NOM @P< #3->1
da [da] PRP @N< #4->3
reformoj [reformo] <sem-c> <act> N P NOM @P<

#5->4
la [la] ART @>N #6->7
efikeco [efikeco] <f> N S NOM @SUBJ> #7->14
de [de] PRP @N< #8->7
la [la] ART @>N #9->11
cxehxa [cxehxa] <jnat> ADJ S NOM @>N

#10->11
ekonomio [ekonomio] <domain> N S NOM @P<

#11->8
ne [ne] <amod> <setop> ADV @>A #12->13

signife [signife] ADV @ADVL> #13->14
transpasxas [transpasxi] <mv> <vt>V PR @FS-STA

#14->0
la [la] ART @>N #15->16
nivelon [nivelo] <ac> N S ACC @<ACC #16->14
atingitan [atingi] <mv> <vt> V PCP PAS IMPF ADJ

S ACC @ICL-N< #17->16
en [en] PRP @<ADVL #18->17
la [la] ART @>N #19->20
jaro [jaro] <dur> <per> N S NOM @P<

#20->18
1989 [1989] <year> <card> <cif> NUM S @N<

#21->20
$.

The following fields are used in the annotation
scheme, and expressed as feature attribute pairs in
xml: wordform, [base form/lemma], <semantics>,

@syntactic_function, #dependency-link

(part of speech tags: N=noun, V=verb,
ADJ=adjective, ADV=adverb, PRP=preposition,
ART=article, NUM=numeral; inflexion: S=singular,
P=plural, NOM=nominative, ACC=accusative,
PCP=participle, PAS=passive, PR=present tense,
IMPF=past tense; syntactic function:
@SUBJ=subject, @ADVL=adverbial, @ACC=direct
object, @>N=pre-nomina modifier, @N<=post-
nominal modifier, @P<=argument of preposition,
@ICL=non-finite clause, @FS=finite clause,
@STA=statement; semantic prototypes: <dur>
duration, <ac> abstract countable, <domain> domain,
<sem-c> semantic product, <act> action, <f> feature,
<jnat> nationality, <mv> main verb; valency: <vt>
transitive)

