Developing a morpholgical disambiguator for Lithuanian based on
Constraint Grammar

Francis Jagiella
Department of Linguistics
Indiana University
Bloomington, IN, USA
fjagiell@indiana.edu

Abstract

This paper presents preliminary work on
a morphological disambiguator for Lithua-
nian based on Constraint Grammar (Karls-
son, 1990). Lithuanian is a Baltic lan-
guage with rich morphology. The pipeline
consists of a morphological analyser of
all possible interpretations for the word-
forms in the corpus as well as a constraint
grammar. In the test corpus, the constraint
grammar has a precision of .9025, a recall
of .9752, and an F1 score of .9374.

1 Introduction

This paper presents a preliminary constraint gram-
mar for Lithuanian®*. A constraint grammar is a
rule-based disambiguator which can serve as input
for other natural language processing tasks. The
main objective in developing this constraint gram-
mar was precision. The corpus used to develop
this constraint grammar with the Lithuanian ALK-
SNIS treebank from the Universal Dependencies
Project (Bielinskiene et al., 2016). The train cor-
pus of the treebank was used to write the rules, the
dev corpus was used to further develop the rules,
and the test corpus was used for computing the re-
ported precision, recall, and F1 score.

The paper is organized as follows: section 2
contains a brief review of literature, section 3 re-
views ambiguities in Lithuanian, section 4 de-
scribes the analysis pipeline, section 5 describes
the development process, section 6 evaluates the
results, and section 7 presents the conclusion and
future work related to the project.

2 Review of literature

There has not yet been a constraint grammar
developed for the Lithuanian language. There
*This work is licensed under a Creative Commons

Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

has, however, been a fair amount of linguis-
tic research on the language. For many years
this research was largely in historical linguistics,
where Lithuanian received much more attention
than fellow Baltic language Latvian. Since the
fall of the Soviet Union, there has been greater
study into other areas of the Lithuanian lan-
guage. Little of this work, however, has been
translated into other languages (Usoniene et al.,
2012). Nevertheless, there are English-language
books and translations on Lithuanian grammar
as well as Lithuanian dictionaries readily avail-
able, which were consulted in the development
of this constraint grammar (Mathiassen, 1997;
Ramoniene and Pribusauskaite, 2008; Piesarkas,
2006; Piesarkas and Svecevicius, 1995). Addition-
ally, there have been instances of computational
work done on the language, including a morpho-
logical analyser (Kapociuté-Dzikiené et al., 2017).

In terms of previous work done with constraint
grammar, there are many examples of it being
used in various languages and for different pur-
poses. In addition to functioning on its own as
a disambiguator, constraint grammar can also be
integrated into parsers based on other formalisms,
such as LFG (Dione, 2014). Constraint grammars
have also been integrated with finite-state trans-
ducers (Trosterud, 2009). Although a high pre-
cision was the goal in developing the Lithuanian
constraint grammar, others have focused on a high
recall (Reynolds and Tyers, 2015).

3 Ambiguity in Lithuanian

In the corpus there are various examples of in-
trapardigmatic, morphosyntactically incongruent,
and morphosyntactically congruent ambiguity.

In intraparadigmatic ambiguity, homographic
wordforms are part of the same lexeme but contain
different features. One such wordform is ‘yra’ of
the lemma biti-‘to be’:

e yra ‘be-AUX, SING, 3’
e yra ‘be-AUX, PLUR, 3’
e yra ‘be-VERB, SING, 3’
e yra ‘be-VERB, PLUR, 3’

Another intrapardigmatic ambiguity in Lithua-
nian is that of ‘kitas’-‘other’ (Piesarkas and Sve-
cevicius, 1995):

e kitas ‘other-PRON, ACC, FEM, PLUR’

e kitas ‘other-PRON, NOM, MASC, SING’

Morphosyntactically incongruent ambiguity is
when two homographs are part of separate lex-
emes and their morphosyntactic values are differ-
ent. The wordform ‘tai’ serves as such an example
in Lithuanian (Piesarkas, 2006):

e tai ‘that/those-DET NEUT DEM’
e fai ‘so-PART’

In contrast, morphosyntactically congruent am-
biguity is when two homographs are part of sepa-
rate lexemes but their morphosyntactic values are
the same. The wordform ‘pirmyn’ demonstrates
this phenomenon:

e pirmyn pirma ‘first-ADV, POS’
e pirmyn pirmyn ‘forward-ADV, POS’

4 Analysis pipeline

4.1 Morphological analyser

To create a list of wordforms and their possible
interpretations, I used Python program which cre-
ates a morphological analyser by treating the train
corpus of the treebank as a fullform list*.

Examples from the morphological analyser are
as follows:

e nérinys Case=Nom Gender=Masc Num-
ber=Plur ‘nériniai’ ‘lace’

e komitetas Case=Gen Gender=Masc Num-
ber=Plur ‘komitetu’ ‘committee’

*https://github.com/ftyers/ud-
scripts/blob/master/conllu-analyser.py

4.2 Rule writing

The constraint grammar, It.cg3, is composed of 79
rules, 26 of which are remove and 53 of which are
select. Remove will eliminate all readings con-
taining a specific feature, such as in the following
example:

e REMOVE:r21 CCONIJ IF (1C PUNCT) ;

This rule will discard all coordinating conjunction
(CCON)) readings if the following token is punc-
tuation (PUNCT). Select, on the otherhand, will
retain all readings containing a specific feature,
discaring whatever else remains.

e SELECT:s19 SCONJ IF (-1 PUNCT) (1
NOMINAL) ;

This rule will retain all subordinating conjunction
(SCONJ) readings while discarding all others if
the preceding token has a punctuation reading and
the following token has a nominal reading.

The rules were developed by running a sen-
tence of the train CoNLL-U file through the mor-
phological analyser to find a list of its outputs.
Based on the ambiguities of the output and the
correct lemma in the corpus, rules were written to
make the constraint grammar pick the correct in-
terpretation. The sentence would then be re-run
through the morphological analyser and the con-
straint grammar to confirm accuracy of the rule.
Once a small set of about five rules was devel-
oped, all sentences were run through the morpho-
logical analyser and the constraint grammar rather
than just the morphological analyser to see what
wordforms were being disambiguated and which
were not. If there were additional forms to be dis-
ambiguated, more rules would be written and the
sentence would be re-run through the morpholog-
ical analyser and constraint grammar.

In cases that were deemed to difficult to disam-
biguate, the wordforms were either left alone or
a rule was written to partially disambiguate. The
lemma biti-‘to be’, with its many interparadigmat-
ically ambiguous forms, did not have rules written
for it. Instead, however, existing rules would often
correctly disambiguate the wordform entirely, as
was the case with the sentence Dabar ji yra iskilusi
- Zioji maZdaug 5 cm plysys ‘It is now cracked,
with a gap of approximately 5 cm.” The follow-
ing rules were used to disambiguate the wordform
yra:

e SELECT:s8 $$PLURALITY IF (-IC
$$PLURALITY) (1C $$PLURALITY) ;

e REMOVE:r15 VERB IF (1C VERB) ;

Some additional rules were written in consulta-
tion with Lithuanian grammar books. For exam-
ple, in Lithuanian, when a transitive verb is used
with a negative, the object is marked with genitive
case rather than accusative case (Ramoniene and
Pribusauskaite, 2008). This was reflected in the
following rule:

e SELECT:s14 NOMINAL + GEN IF (*-1
VERB + NEG) ;

The sentence Ganyklon karvasiudZiu Zitiréti tegu
eina tos, kurios neturi televizoriu “The pasture
cowboy let those who do not have a television go’
demonstrates this case. The wordform neturi is
a negative verb and consequently, the wordform
televizoriu is correctly selected for a genitive read-
ing over an accusative reading.

At this stage in the process, accuracy of rules
was not of concern. If a rule made an incorrect
reading of a wordform in a new sentence. The in-
accuracy was disregarded and only remaining am-
biguities were considered for new rules. In the de-
velopment process, rules were evaluated for accu-
racy and modified or eliminated accordingly.

5 Development process

To test the rules in the constraint grammar and fur-
ther develop it, a script was run. It took the dev
CoNLL-U file of the Lithuanian ALKSNIS tree-
bank and ran it through the analyser and It.cg3
files and then compared the output of this process
to the annotation in the dev file. This script out-
puts the true and false positives for each rule; the
number of input, output, and reference analyses;
input, output, and reference ambiguity; total true
and false positives and negatives; and precision,
recall, and F-score.

From the rule by rule output of the script, poorly
performing rules could be eliminated or modified
accordingly. Rules which were eliminated were
simply commented out of the constraint grammar
file as a means of keeping track of what rules have
been discarded and to avoid rewriting a bad rule.

For final analysis of the performance of the con-
straint grammar, a similar script was run, using the
test corpus.

6 Evaluation

6.1 Corpus analysis

The dev corpus of the Lithuanian ALKSNIS tree-
bank on which the constraint grammar was tested
consisted of 10,826 tokens. The test corpus con-
tained 10,118 tokens. When running them through
the morphological analyser and constraint gram-
mar, the following results were computed:

Table 1: Ambiguity in the test corpus

Input | Reference | Output
Analyses | 12629 10118 10933
Ambiguity | 1.25 1.0 1.08

The table above summarizes the ambiguity left in
the test corp after being run through the constraint
grammar. It can be seen that while the corpus had
a noticeable reduction in ambiguity, there still re-
mains plenty of ambiguity within the corpus.

The following tables demonstrate the perfor-
mance of the constraint grammar through preci-
sion and recall.

Table 2: Precision and Recall with
Disambiguation

dev | test
Precision | .91 | .90

Recall 98 | .98
F1 Score | .94 | .94

Table 3: Precision and Recall without
Disambiguation

dev | test
Precision | .80 | .80

Recall 1.0 | 1.0
F1 Score | .89 | .89

As can be seen in the tables above, both corpora
saw an increase in precision of about 10%, effec-
tively reducing around half of ambiguity. Recall
remained high after being run through the gram-
mar at about 98% in each, and the F1 score had a
similar improvement to that of the precision. Pre-
cision is defined as the number of true positives
over all positives. Recall is defined as the number
of true positives over the sum of true positives and
false negatives. The F1 score is calculated by tak-
ing 2 times the product of precision and recall over
the sum of precision and recall. True positives are
correct readings that are retained by the grammar.
True negatives are not found in the output of the
analyser. False positives are readings the grammar
retains but are not in the corpus. False negatives
are correct readings the grammar removes.

In the following tables the number of true and
false positives and negatives for both the dev and
test corpora are presented:

Positives and Negatives in the dev corpus

Positives | Negatives
True 10573 1699
False 1076 253
Positives and Negatives in the test corpus
Positives | Negatives
True 9867 1445
False 1066 251

6.2 Correcting underperfoming rules

Upon the initial run of the run-grammar.sh pro-
gram, it was evident that certain rules were un-
derperforming, perhaps even incorrectly disam-
biguating more often than they were correctly dis-
ambiguating. One such rule was as follows:

e REMOVE:r3 CCONIJ IF (-1 PUNCT) ;

This rule was intended to disambiguate words
which could be coordinating conjunctions or par-
ticles. While in the first few sentences, the rule ap-
peared to be working well, I did notice its frequent
failure in later sentences while in the initial rule
writing stage and working with the train corpus.
Upon running the evaluation on the dev corpus, I
discovered the rule was only applying correctly 24
out of 65 times, a mere 36% of the time. As a re-
sult, I simply deleted the rule without attempting
to modify it in any way.

Another rule which had a poor performance was
one which was made to select a singular reading
over an underspecified reading if no possible read-
ing was plural.

e SELECT:s6 SING IF (NOT 0 PLUR) ;

This rule performed just better than 50%, cor-
rectly disambiguating 41 of 80 tokens in the dev
corpus.

In other cases, rules needed to be made more
specific to properly capture the goal of the rule
and increase its precision. The initial version of
the rule below simply had the verb select the plu-
rality of the noun following it. I discovered this
frequently led to incorrect decisions when the fol-
lowing noun was not nominative. The rule had
correctly disambiguated 35 out of 48, or about
72.9% of the time, in the dev corpus. As a result, I
added the nominative requirement, on the assump-
tion that the verb was conjugating for the subject,
which typically will have a nominative case.

e SELECT:s25 VERBAL + $$PLURALITY
IF (1 NOMINATIVE + $$SPLURALITY);

The updated rule was very successful, correctly
disambiguating 71 out of 76 tokens, or about
93.4% of the time, in the dev corpus and correctly
disambiguating all 64 tokens it was used on in the
test corpus.

7 Conclusion and future work

Thus far, the constraint grammar has been working
relatively successfully. A lot of progress has been
made without any prior knowledge of Lithuanian
or constraint grammar. With precision sitting at
about 90%, rules will still need to be added and
fine-tuned to cover as much of the remaining gap
as possible.

Only 170 of 1056 sentences in the train corpus
have been run through the morphological analyser
to develop the current set of 79 rules. With the re-
maining sentences to be run, the constraint gram-
mar has the possibility of getting more fine-tuned
rules that will disambiguate more precisely.

References

Agne Bielinskiene, Loic Boizou, Jolanta Ko-
valevskaite, and Erika Rimkute. 2016. Lithuanian
Dependency Treebank ALKSNIS. 1. Skadina and
R. Rozis (Eds.): Human Language Technologies —
The Baltic Perspective.

Cheikh M. Bamba Dione. 2014. Pruning the search
space of the wolof Ifg grammar using a probabilis-
tic and a constraint grammar parser. Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014).

Jurgita Kapociuté-Dzikiené, Erika Rimkuté, and Loic
Boizou. 2017. A comparison of lithuanian mor-
phological analyzers. Text, Speech, and Dialogue.
TSD 2017. Lecture Notes in Computer Science, vol
10415.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing running text. In Proceedings of the
13th Conference on Computational Linguistics, vol-
ume 3, pages 168—173.

Terje Mathiassen. 1997. Short Grammar of Lithua-
nian. Slavica Publishers, Inc., Columbus, OH.

Bronius Piesarkas. 2006. Didysis Lietuviu-Anglu Kalb
Zodynas. Zodynas Publishers, Vilnius, Lithuania.

Bronius Piesarkas and Bronius Svecevicius. 1995.
Lithuanian Dictionary English-Lithuanian
Lithuanian-English. Zodynas Publishers, Vil-
nius, Lithuania.

Meilute Ramoniene and Joana Pribusauskaite. 2008.
Practical Grammar of Lithuanian. Baltos Lankos,
Lithuania.

Robert Reynolds and Francis M. Tyers. 2015. A
preliminary constraint grammar for russian. Pro-
ceedings of the Constraint Grammar workshop at
NODALIDA, the 20th Nordic Conference of Compu-
tational Linguistics.

Trond Trosterud. 2009. A constraint grammar for
Faroese. In Proceedings of the NODALIDA 2009
workshop Constraint Grammar and robust parsing.

Aurelija Usoniene, Nicole Nau, and Ineta Dabasin-
skiene. 2012. Multiple Perspectives in Linguistic
Research on Baltic Languages. Cambridge Schol-
ars Publishing, Newcastle upon Tyne, UK.

