
Constraint Grammar as a hand-crafted Transformer

Anssi Yli-Jyrä
Helsinki Centre for Digital Humanities (HELDIG)
P.O. Box 24, 00014 University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Abstract

The differences between the rule-based
NLP such as CG and the deep neu-
ral networks, such as the Transformer
(Vaswani et al., 2017) are so striking
that it is really hard to see any rel-
evant conceptual links between them.
However, this paper sketches a thought
experiment that assumes an equiva-
lent input-output behaviour by both
systems and aligns certain structural
aspects of the computation behind a
practical Constraint Grammar with the
computation structure of Transformer.
Based on this scene, several findings
are presented that state some func-
tional similarities in the computation
graphs of the systems.

1 Introduction

The Transformer architecture (simply Trans-
former) (Vaswani et al., 2017), and Constraint
Grammar parsing framework (simply CG) are
currently in the opposite ends of the contin-
uum for different NLP technologies (Table 1).
The main contrasts between these relate to the
representation of word senses and the way in
which the systems implement machine learn-
ing. Learning in both systems is error-driven,
but CG can use transformation-based learn-
ing algorithms (Brill, 1995; Lager, 2001) that
differ greatly from the backpropagation algo-
rithm used as a part of the gradient descent
optimisation of Transformer. A more strik-
ing, but superficial difference is the way how
the systems traditionally represent their lexi-
cons. A Transformer network (a Transformer)

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

assumes a lexicon of word parts. This maps
the word parts, or tokens, directly to a high-
dimensional vector space. A Constraint Gram-
mar parser (a CG) has typically access to a
finite-state based lexicon that assigns, to each
word, a set of morpho-syntactic readings and
categories. These sets are called cohorts.

Since there is no obvious link between con-
straint grammars and deep neural networks,
the two methods are seldom studied in paral-
lel. If there are some links, they are hardly
ever been pointed out. One harmful conse-
quence of this state of affairs is that it is not
known how to combine these technologies in
a synthetic design. Therefore, it is especially
valuable to investigate how these unrelated
technologies could be aligned and even mar-
ried with one another. Accordingly, the aim
of the current paper is to start a discussion
that seeks for cross-design understanding and
synthesis. This discussion may lead to ideas
that allow us to create NLP that takes advan-
tage of both expert knowledge and big data.

Talman et al. (2019) compared the per-
formance of a CG-based machine translation
(MT) system and a Transformer-based sys-
tem, bringing them thus to the same table for
comparison in terms of their respective trans-

Table 1: Some contrasts
Transformer CG

based on: neural networks restarting automata
data need: large moderate

tokens: word parts inflected words forms
input sequence: word embeddings cohorts of readings

word senses: continuous discrete tag sequences
features: learned feature

representations
template or lattice
based features

special use: pretrained embeddings gold annotation
learning: backpropagation and

stochastic gradient
descent (SGD)

composition and
transformation-based
learning (TBL)

http://creativecommons.org/licenses/by/4.0/


lation quality. Our aim is to consider the the-
oretical consequences of a further step that is
based on a thought experiment. According to
it, we assume the imaginary situation where
both systems would happen to compute the
same, nontrivial function. Although this state
of affairs is unlikely to be generally achiev-
able, there is a realistic posibility that a Trans-
former is able to learn to compute the same
input-output mapping as a typical CG.

In such a world where the same mapping
would be computed by two kinds of systems,
it is natural to ask whether the equivalent be-
haviour has something to do with a similar
structure that is shared by both systems. Per-
haps the kind of structure with most promising
parallels is the high-level computation graph
of both systems. A computation graph is a
directed graph that shows the flow of infor-
mation in a system that consists of several
connected processing modules. The current
hypothesis is that both systems actually have
corresponding computation steps that can be
functionally aligned with each other.

Since the experiment facilitates the detec-
tion of analogies in design, it has potential
value for further research. This research may
want to build robust systems where CG and
statistical models complement one another, or
hybrid systems that contain some computa-
tion steps from CG and some other steps from
Transformer or a simpler encoder-decoder ar-
chitecture.

2 Aligned Encoders
To argue for conceptual connections between
Constraint Grammar and Transformer, we
start from very general observations.

The encoder-decoder components. A
Transformer is a composition of a stack of en-
coder networks and a stack of decoder net-
works: enc◦dec. The layers of the encoder net-
works (enc) build an internal representation
for the input string. Then, a multi-layer de-
coder network (dec) produces an output string
based an internal representation.
Finding 1. Both systems contain an encoder
component that embeds the input sequence to a
sequence of contextually disambiguated feature
representations of tokens at each position.

Proof. This is clearly true for Transformer.

Constraint Grammar is an encoder that maps
the sequences of ambiguous cohorts to se-
quences of (nearly) unambiguous cohorts that
represent the contextual reading of each token
in a sentence.

The existence of a decoder component in
both systems can also discussed. CG does
not usually have a decoder component, but
it has sometimes been extended with mod-
ules that can be seen as decoders. For ex-
ample, Hurskainen (1999) and (Hurskainen
and Tiedemann, 2017) describe CG-based sys-
tems where the disambiguated input string
is processed further by “decoding” modules.
These modules implement a mapping from the
contextualised token representations to a rep-
resentation of the corresponding target lan-
guage tokens, and a mapping from the orig-
inal word order to the target word order, etc.
Since the internal structure of these modules
is still somewhat different from the decoders of
the Transformer architecture, their similarities
cannot be demonstrated in the current work.

Information reduction. By design, the
encoder stack of Transformer is a multi-layer
neural network. The information content of
the output is a subset of the information con-
tent that is available in the input. The rest
of the input information is irrelevant for the
output and is thrown out during the encoding
process.
Finding 2. The encoders of both systems are
functions and thus reductionistic: the amount
of information that is relevent for the output
representation is not increasing inside the en-
coders.

Proof. The output layer of a Transformer is
a function of the input layer. A Constraint
Grammar is generally known to be an iterated
function that transforms the input sequence to
a less ambiguous one.

Feature vectors. Although the tokens are,
in many ways, ambiguous in the beginning,
Transformer assumes a finite lexicon of tokens.
It embeds the tokens to a space of continuous
representations.
Finding 3. Both systems represent the input
tokens as feature vectors.



Proof. Yli-Jyrä (2011) has demostrated how
to embed the input cohorts of a CG system
into finite vectors. These vectors contain the
values of those hand-engineered features that
are used in rule conditions and are thus rele-
vant for the function defined by the CG gram-
mar. Such vectors can be extended to a loss-
less representations from which the input co-
horts in a finite lexicon can be decoded. Such
a representation is comparable with the token
embedding vectors used by Transformer.

A finite number of layers. The encoder
network in Transformer contains typically 6–
64 similar layers (with different weights).1

Finding 4. The encoder components of both
systems have a potentially finite number of lay-
ers.

Proof. The finite bound for layers holds for
Tranformer by definition. Yli-Jyrä (2017b)
conjecture that, in practice, each CG can be
viewed as a finite-visit Turing machine, which
is known to be equivalent to a functional one-
way finite-state automaton or transducer, see
Yli-Jyrä (2017a). Such a machine model has a
reading-writing head that does not cross any
position in the sentence more than k times.
According to the argument, this optimisation
is made possible by the assumption that at
most a finite amount of information needs to
be communicated across each sequence posi-
tion. Hulden (2011), Peltonen (2011) and Yli-
Jyrä (2011) present similar analyses for sepa-
rate CG rules but they do not reach the con-
jecture that finite visits and bounded cross-
ings per position would be sufficient for the
correct function semantics of the whole CG
parser where the rules are supposed to ap-
ply iteratively. Once the equivalence with a
finite-state transducer is established, it is easy
to see that a multi-layer composition of sev-
eral finite-state transducers can be much more
succinct way to compute the same function.
Thus, both encoders have a finite number of
layers in the case where the finite-visit conjec-
ture holds.

Given these four observations, we can draw
a diagram (Figure 1) that aligns the computa-

1This raises a question, could the encoder network
have recurrent layers that share their weights. This
would make the encoder even more similar to a CG.

CG: Transformer:
c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

c
↑•••

rule FST
...

rule FST
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

rule FST
•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
↑c
↑w

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

encoder layer
...

encoder layer
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

encoder layer
•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

•••
↑w

Figure 1: Alignment of the encoders

tional structure of the encoder of Transformer
with a CG system.

3 Aligned Sublayers

The alignment inside the corresponding lay-
ers of the encoders requires us to dig into the
more detailed structure inside both CG and
Transformer. There are at least three ways to
approach a CG parser, but none of these al-
lows us to see a natural alignment with Trans-
former.

Iterative Rule Application. Some CG
parsers have a control mechanism that iter-
ates over the positions of the sentence and
over the disambiguation rules, trying to ap-
ply each rule at each position at a time. If
non-monotonic rules are included, the parser
becomes Turing complete (Kokke and Listen-
maa, 2017; Yli-Jyrä, 2017b). Since Trans-
former has been specifically designed to have
a bounded number of layers, the iterative rule
application differs too much from it.

Constraint Programming. Another view
on constraints treats the constraints conjuc-
tively, requiring the output sequence to sat-
isfy all the constraints. For some inputs, the
system can be over-constrained, which would
make the parser to fail, unless some constraints
are relaxed (Listenmaa, 2019). Such con-
straint programming approach is quite differ-
ent from the Transformer architecture whose
encoders are position-wise, without any con-
straint relaxation.

Maximum Subgraph Problem. A new
approach to constraint relaxation is to refor-
mulate the constrained parsing as a maxi-
mum subgraph problem. Yli-Jyrä and Gómez-



Rodríguez (2017) consider complete depen-
dency graphs with arc-factored weights and
sketches an efficient parsing algorithm for
maximun non-crossing subgraphs that satisfy
some hard constraints, such as acyclicity and
connectivity. This algorithm differs both from
the original CG approach and from Trans-
former because it can verify global graph-
theoretic properties of the noncrossing graphs
that are represented as a linear sequence.
This approach is currently being extended to
nonprojectice trees and arbitrary graphs (Yli-
Jyrä, 2019) as parse subgraphs.

In Transformer, each encoder network con-
sists of two position-wise networks: (1) a self-
attention network and (2) a feed-forward (FF)
network. The first network queries, in parallel
for every input position, an attention-weighted
average vector that describes an aspect of its
context in the sentence. After this, the FF
network modifies or “rewrites” the vector that
encodes the contents of each position based on
the information gathered via self-attention.
Finding 5. The two subnetworks of the en-
coder in Transformer can be compared with the
computation steps used in Yli-Jyrä (2011).

Proof. The computation structure of Trans-
former corresponds to one variant of the iter-
ative CG rule application. In this variant, all
context conditions for every input position are
tested before any decisions about rule applica-
tions are made. After testing the contexts,
the system can make one or more simultane-
ous decisions to make changes to the feature
vector representation of the input cohorts. If
sufficiently many positions are changed during
one iteration, the system becomes very simi-
lar to Transformer. This is exactly when the
CG parser can be implemented with a finite
cascade of finite-state transductions.

Particularly in Yli-Jyrä (2011), all the con-
ditions of rule targets and contexts in the
whole grammar are represented by a “self-
attention” query-FSA (Figure 2) that can rep-
resent thousands of complex context queries in
a very compressed and efficient way. Unlike
the self-attention in Transformer, this query
mechanism is recurrent. The query result for
each input position is a vector representing
a summary of those contexts that are true.
These vectors are sparse and were proposed to

0

•
1

715.(NNom)+
715.(NNom)?

6
821.NSg?

2
•

3

3.CLB-
3.CLB?

4821.NSg?

715.(NNom)?
715.(NNom)-

5

@2.865@ •

7
@1.865@

8•

820.(VSg3)?
820.(VSg3)+

9

3.CLB-
3.CLB?

820.(VSg3)?
820.(VSg3)-

Figure 2: a small portion of a “self-attention”
query network in CG

CG: Transformer:

Feature-based
cohort manipula-
tions

Recurrent “self-
attention” query
network

FF network for
position-wise
manipulations

Non-recurrent
self-attention
network

Figure 3: Sublayers of the encoders

be represented with position-wise flag diacrit-
ics notation introduced in Yli-Jyrä (2011).

The alignment of the sublayers gives us a
picture (Figure 3) where CG and Transformer
seem to encode the input in similar steps but
with different techniques.

4 Conclusion
In this paper, we have aligned the high-level
computational structures of CG parser and
a Transformer under their functional equiva-
lence. This resulted in findings

1. on their encoder-decoder decomposition,
2. on their reductionistic nature,
3. on their vectorized token representations,
4. on their finite number of layers, and
5. on the two steps in each encoder layer.

We also noted that the alignment is not per-
fect. For example, it is probable that the co-
hort vectors and the word embedding vectors
do not represent the lexical or morphological
ambiguity in the same way. Understanding
the significance of this difference would be cru-
cial for the discussion about interpretability
and invertibility of token representations.

Although the alignment is not perfect due
to the differences between the token represen-
tations and the self-attention layers, the align-
ment suggests the possibility of hybrid parsing
models that would combine these architectures
and their complementary strengths in NLP.



References
Eric Brill. 1995. Transformation-based error-

driven learning and natural language processing:
A case study in part-of-speech tagging. Comput.
Linguist., 21(4):543–565.

Mans Hulden. 2011. Constraint grammar parsing
with left and right sequential finite transducers.
In Proceedings of the 9th International Work-
shop on Finite State Methods and Natural Lan-
guage Processing, pages 39–47, Blois, France.
Association for Computational Linguistics.

Arvi Hurskainen. 1999. Salama swahili language
manager. Nordic Journal of African Studies,
8(2):139–157.

Arvi Hurskainen and Jörg Tiedemann. 2017.
Rule-based machine translation from english to
finnish. In Proceedings of the Second Con-
ference on Machine Translation, WMT 2017,
Copenhagen, Denmark, September 7-8, 2017,
pages 323–329. Association for Computational
Linguistics.

Pepijn Kokke and Inari Listenmaa. 2017. Explor-
ing the expressivity of constraint grammar. In
Proceedings of the NoDaLiDa 2017 Workshop on
Constraint Grammar - Methods, Tools, and Ap-
plications, 22 May 2017, pages 15–22, Gothen-
burg, Sweden. Linkoping University Electronic
Press.

Torbjörn Lager. 2001. Transformation-based
learning of rules for constraint grammar tagging.
In NODALIDA.

Inari Listenmaa. 2019. Formal Methods for Testing
Grammars. Ph.D. thesis, Department of Com-
puter Science and Engineering, Chalmers Uni-
versity of Technology and University of Gothen-
burg, Gothenburg, Sweden.

Janne Peltonen. 2011. Rajoitekielioppien toteu-
tuksesta äärellistilaisin menetelmin. Master’s
thesis, University of Helsinki, Department of
Modern Languages, Helsinki.

Aarne Talman, Umut Sulubacak, Raúl Vázquez,
Yves Scherrer, Sami Virpioja, Alessandro Ra-
ganato, Arvi Hurskainen, and Jörg Tiedemann.
2019. The university of Helsinki submissions
to the WMT19 news translation task. In Pro-
ceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers,
Day 1), pages 412–423, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Proceedings of the 31st
International Conference on Neural Information
Processing Systems, NIPS’17, pages 6000–6010,
USA. Curran Associates Inc.

Anssi Yli-Jyrä. 2011. An efficient constraint gram-
mar parser based on inward deterministic au-
tomata. In Proceedings of the NODALIDA
2011 Workshop Constraint Grammar Applica-
tions, volume 14 of NEALT Proceedings Series,
pages 50–60.

Anssi Yli-Jyrä. 2011. Explorations on position-
wise flag diacritics in finite-state morphology.
In Proceedings of the 18th Nordic Conference of
Computational Linguistics (NODALIDA 2011),
pages 262–269, Riga, Latvia. Northern Eu-
ropean Association for Language Technology
(NEALT).

Anssi Yli-Jyrä. 2017a. Forgotten islands of regu-
larity in phonology. In K + K = 120: Papers
dedicated to László Kálmán and András Kornai
on the occasion of their 60th birthdays.

Anssi Yli-Jyrä. 2017b. The power of Constraint
Grammar revisited. In Proceedings of the
NoDaLiDa 2017 Workshop on Constraint Gram-
mar - Methods, Tools, and Applications, 22
May 2017, pages 23–31, Gothenburg, Sweden.
Linkoping University Electronic Press.

Anssi Yli-Jyrä. 2019. Transition-based coding and
formal language theory for ordered digraphs. In
Proceedings of FSMNLP 2019, Dresden. Associ-
ation for Computational Linguistics.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez. 2017.
Generic axiomatization of families of noncross-
ing graphs in dependency parsing. In Proceed-
ings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1745–1755. Association
for Computational Linguistics.

http://dl.acm.org/citation.cfm?id=218355.218367
http://dl.acm.org/citation.cfm?id=218355.218367
http://dl.acm.org/citation.cfm?id=218355.218367
https://www.aclweb.org/anthology/W11-4406
https://www.aclweb.org/anthology/W11-4406
https://aclanthology.info/papers/W17-4731/w17-4731
https://aclanthology.info/papers/W17-4731/w17-4731
http://www.ep.liu.se/ecp/140/004/ecp17140004.pdf
http://www.ep.liu.se/ecp/140/004/ecp17140004.pdf
https://www.aclweb.org/anthology/W19-5347
https://www.aclweb.org/anthology/W19-5347
http://dl.acm.org/citation.cfm?id=3295222.3295349
http://dl.acm.org/citation.cfm?id=3295222.3295349
http://hdl.handle.net/10062/19302
http://hdl.handle.net/10062/19302
http://hdl.handle.net/10062/19302
https://www.aclweb.org/anthology/W11-4636
https://www.aclweb.org/anthology/W11-4636
http://clara.nytud.hu/~kk120/
http://clara.nytud.hu/~kk120/
http://www.ep.liu.se/ecp/140/005/ecp17140005.pdf
http://www.ep.liu.se/ecp/140/005/ecp17140005.pdf
https://doi.org/10.18653/v1/P17-1160
https://doi.org/10.18653/v1/P17-1160

	Introduction
	Aligned Encoders
	Aligned Sublayers
	Conclusion

