
Eckhard Bick, CG-3 how-to 4/2009

Basic Constraint Grammar Tutorial for CG-3 (Vislcg3)

This text constitutes a fairly complete manual for the CG-3 compiler formalism, but it is also
intended as a tutorial for computational linguists who have not so far used Constraint Grammar
in their work, or have been using an older implementation, such as Vislcg, cg-2 or cg-1. Thus,
usage and linguistic examples are provided throughout the text. For the same reason, grammar
architecture, linguistic-expressive issues and applicational perspectives are discussed where
relevant.

1.Command-line usage:

Once installed on your system, the CG-3 compiler can be run command line or as a background
service for other programs, reading input from a unix pipe (text or file). Basic parameters are a
grammar (--grammar) and encoding information (e.g. utf8 or iso-latin). Optionally, specific
grammar sections can be activated (--sections) or inactivated (--no-mappings), and rule actions
can be traced (--trace).

● standard call: vislcg3 --grammar rulesfile, vislcg3 � g rulesfile

● without mapping rules: --no-mappings

● with rule-number traces for debugging: --trace, --t

● limited number of n least heuristic constraint sections: --sections n, --sections n-m, --s n

● special mapping prefix (default ='@'), e.g. '§': --prefix §, --prefix '§', --p §, not --prefix='§'

● Iso-latin input (� codepage�): -C ISO-8859-1

Standard morphosyntactic grammars: Ordinarily input is piped from a lexicon-based
morphological multitagger, or a lower level of Constraint Grammer (annotated corpus), but input
from probabilistic taggers (Treetagger, TnT, Brill etc.) can also be used, in which case the first
rule section typically will be a correction grammar rather than a morphological disambiguation
grammar. In order to prevent syntactic rules from interfering with morphological ones (by being
run on morphologically not-yet disambiguated input), it is recommended to run vislcg twice -
first without, then with syntactic mapping. Finally, disambiguated/tagged output can be piped
directly to a file, or processed with layout filters or further grammars in other formalisms
(constituent grammar, dependency grammar, field grammar etc.).

● cat textfile | multitagger | vislcg3 -C ISO-8859-1 --grammar rulesfile --no-mappings |
vislcg3 -C ISO-8859-1 --grammar rulesfile | postfilter > textfile.cg

● with tracing: Use - - trace after the grammar that you want to debug. Chaining several �
trace grammars will work with vislcg2, but give odd results in vislcg3

Multitagger or other input has to deliver so-called verticalized text, i.e. one token pr. line, with
non-punctuation tokens followed by a cohort of one or more possible analyses, indented, one pr.
line. Conventionally, cohort lines start with the lexeme or base-form (in quotes), followed by
word class (PoS) and inflexion tags in upper case. Secondary tags, meant to be used as
disambiguation context, but not intended for disambiguation themselves, such as subclass,
valency and semantic tags, should be placed in <...> brackets between lexeme and word class
tags:

word form
� lexeme-1� <valency> .. <semantics> .. POS-1 INFLEXION

Eckhard Bick, CG-3 how-to 4/2009

� lexeme-1� <valency> .. <semantics> .. POS-2 INFLEXION
� lexeme-2� <valency> .. <semantics> .. POS-3 INFLEXION
� lexeme-2� <valency> .. <semantics> .. POS-4 INFLEXION

Output after CG will look like this:

"<he>"
 "he" PERS MASC 3S NOM @SUBJ> MAP:2734
"<could>"
 "can" <aux> V IMPF @FS-STA ADD:1590 ADD:1595 MAP:2477
"<see>"
 "see" <vq> <mv> V INF @ICL-AUX< ADD:1621 ADD:1637 MAP:2194
"<a>"
 "a" <indef> ART S @>N MAP:2161
"<red>"
 "red" <jcol> <S:14> ADJ POS @>N MAP:1758
"<house>"
 "house" <build> N S NOM @<ACC SUBSTITUTE:1532 ADD:1722 MAP:2771
"<$.>"

Or, with � trace, to identify rule numbers used:

"<he>"
 "he" PERS MASC 3S NOM @SUBJ> MAP:2734
"<could>"
 "can" <aux> V IMPF MAP:1584 @FS-STA ADD:1590 ADD:1595 MAP:2477
"<see>"
 "see" <vq> <mv> V INF ADD:1621 ADD:1637 @ICL-AUX< ADD:1621 ADD:1637
MAP:2194
; "see" <vq> V PR -3S ADD:1621 REMOVE:5211
; "see" <vq> V IMP ADD:1621 REMOVE:5211
"<a>"
 "a" <indef> ART S @>N MAP:2161
"<red>"
 "red" <jcol> <S:14> ADJ POS @>N MAP:1758
; "red" <color> <S:16> <first> N S NOM SUBSTITUTE:1532 SUBSTITUTE:1544
REMOVE:4681
"<house>"
 "house" <build> <HH> <second> <S:135> <nhead> N S NOM SUBSTITUTE:1532
SUBSTITUTE:1545 SELECT:5681 @<ACC SUBSTITUTE:1532 ADD:1722 MAP:2771
; "house" V PR -3S ADD:1621 REMOVE:5218
; "house" V IMP ADD:1621 REMOVE:5320
; "house" V INF ADD:1621 SELECT:5681
"<$.>"

Note that removed lines are still shown, but marked with a ';' - allowing easier debugging.
Socondary programs can be used to filter this output in various ways. The author, for instance,
uses the following:

1. niceline.perl (condenses output to one-line cohorts)
2. hilite_cg 31 '@.*' (colours syntactic @-fields red)

Eckhard Bick, CG-3 how-to 4/2009

2.The rules file

A vislcg3 rules file consists typically of the following sections:

DELIMITERS (1 line, defines sentence boundaries)

SETS (1 or more sections of set definitions, compiled as one)

CORRECTIONS (1 section of correction rules, replacing tags anywhere in a reading)

MAPPINGS (1 section of mapping rules, adding tags at the end of a reading line)

CONSTRAINTS (1 or more sections of REMOVE or SELECT rules)

END

The CG-3 compiler will use DELIMITERS to chunk the text into sentence windows, then define
labels for sets of tags or tag lists (SET section), and finally apply the rules in the order of
occurrence, one section at a time. CONSTRAINTS sections will be run iteratively. For special
purposes, CG-3 recognizes a BEFORE-SECTIONS and a AFTER-SECTIONS section, that are
only run once, to respectively prepare or postprocess an annotation.

Set sections contain LIST definitions of sets, written as lists of ORed tags or tag chains (in
parentheses). Once defined, sets may be combined into new sets with a SET definition, using set
union and set subtraction.

Mapping and Correction sections have MAP/ADD and SUBSTITUTE rules,
respectively. These rules are applied in strict sequential order. But while MAP/ADD rules can't
"see" in their context conditions what earlier mapping rules have mapped, this is not true of
SUBSTITUTE rules, which do interact with the result previous substitution rules.

Constraint sections will be interpretad as heuristicity batches, with safer rules in the first
sections, and more heuristic rules in later sections. Each section is repeated until no further of its
rules can be instantiated (i.e. meet their context conditions), then the next section is run and the
first section re-run after second-section disambiguation to check for changed contexts. After that,
a third section is run, and the lower ones rerun: 1 � 2 1 � 3 1 2 � 4 1 2 3 ... etc. The � sections n
flag can limit this reiteration to sections 1 through n , or even select a range (or ranges) of
sections, e.g 3-7, 9-10.

Since CG-3 allows any rule type to occur anywhere in the grammar, a neutral SECTION header
has been introduced to optionally replace the traditional CONSTRAINTS, MAPPINGS and
CORRECTIONS headers.

Unlike its predecessors CG-2 and Vislcg, CG-3 always applies rules in the order they occur in the
grammar, and will try to apply a given rule to all cohorts in the window before moving on to the
next rule.

Each set definition or rule is terminated with a semicolon, but can run over serveral lines. As in
several programming languages, the #-symbol marks the rest of a line as a comment.

Eckhard Bick, CG-3 how-to 4/2009

3.The individual elements and functors of a CG grammar file

3.2.Delimiters

The vislcg compiler applies rules within a certain context window, defined by delimiters.
Typically, delimiters will be sentence boundary markers (i.e. punctuation), but paragraphs,
corpus section markers or even specific stop-words could be used. Rules can refer to the
boundaries with the reserved symbols >>> (left boundary) and <<< (right boundary).

DELIMITERS = � <.>� � <!>� "<?>" ;

The example defines a fullstop, exclamation mark or question mark as a delimiter. Note that
punctuation notation follows wordform notation, with quotes and angle brackets. For the sake of
headlines and running input in general, it can be recommended to include a � hard-break�
introduced by a preprocessor, e.g. � <¶>� .

CG-3 can keep several windows in memory at any time in order to fascilitate cross-window
scanning from contextual tests (using the W operator, with a default span of ±2 windows). It is
also possible to break a window into smaller windows on-the-fly with a DELIMIT rule anywhere
in the grammar.

3.3.Set definitions

In both their targes and context conditions, CG rules can refer not only to words, lexemes and
tags, but also sets of words, lexemes or tags, or even combinations of these three types. Two
kinds of set definitions are used:

(a) LIST set-name =

followed by a list of tags or tag combinations (the latter in parentheses), separated by spaces. The
list constitutes the set, and a rule targeting a set is equivalent to a batch of rules targeting each set
element separately. Note that tag combinations are not, unlike CG2, order sensitive at the
moment, i.e. (<vi> <vt>) equals (<vt> <vi>). Therefore, if you wish to make this distinction, you
should define composite tags or create them with a preprocessor, e.g. <vi-vt> and <vt-vi>.

(b) SET set-name =

defining a new set as a mathematical operation on existing sets. Sets used in a SET definition,
must occur earlier in the grammar. Tags can be used as sets on the fly by enclosing them in
parentheses.

A set element can be:
● a tag, word form or lexeme, e.g. N [for noun], "<bought>" [word form] or "buy" [lexeme]
● a combination of (1), as a kind of "snapshot" from a reading, in parentheses. The snapshot

may have "holes" (i.e. interfering tags appearing in the reading but not in the set element).
For instance, (N M P) [for noun masculine plural], or (� eat� INF).

In a SET definition (b), sets can be combined with the following operators:

set union: OR or | , e.g. set1 OR set2 OR (tag3) OR (N F S)

Eckhard Bick, CG-3 how-to 4/2009

concatenation: + , e.g. set1 + set2, yields all possible combinations of the 2 sets' elements. Thus,
a concatenation of LIST set1 = V and LIST set2 = INF GER PCP covers all non-finite verb
forms: (V INF) (V GER) (V PCP).

negation (match set difference): - , e.g. set1 but not set2, means set1 as long as the reading in
question does not contain elements from set2. Thus, rather than just a removal of set2 elements
form the set1 list (i.e. defining list difference, as used in Tapanainen's cg2). Vislcg3 interprets the
minus operation as a kind of NOT condition, so the presence of a set2 element in a reading will
block and override the presence of a set1 reading. Thus, (N) - (P) means non-plural nouns. In the
upcoming visl-cg3, a clear distinction will be made between negation and set difference.

The + and - operators have precedence over OR.

failfast: ^, is not, strictly speaking, a set operator, since it doesn't operate on sets. Rather, it is
used in front of a tag in a LIST set definition. It will block instantiation of the set if present i a
given reading, even if other elements of the set do match tags in the reading.

Note that the first three operators, as well as the parenthesis convention for creating sets on-the-
fly, can be used in targets and context conditions of rules.

tag inversion: ! (exclamation mark) is used as a tag-prefix and means � all but ..� or � but not� ,
much like the ^ fail fast prefix. However, ! is used in tag strings and contexts, while ^ is used in
set definitions. Thus, the latter (^) blocks the OR'ed lists, while the former (!) blocks AND'ed
lists, if instantiated in a reading.

The formalism has a built-in magic set, (*), to denote � everything� . The (*) set is an easy way to
navigate step-wise left or right in LINK'ed contexts, e.g. LINK -1 (*) LINK 1 ... to include the 0
position in an unbounded search (useful in complex vp's). The magic () set can also be used to
negate a set, e.g. (*) - (N) for all tokens that are not nouns.

3.4.Constraints

Constraint rules are ordered in sections, usually in order to separate safer rules (to be used
earlier) from more heuristic rules (to be used later). One and the same grammar can be run at
different levels of heuristicity by using the � sections n flag when calling Vislcg3, meaning that
only the first (=safest) n constraint sections of the grammar will be used.

A CG rule has the following general form, with [] brackets indicating optional elements:

["<Wordform>"] OPERATION TARGET [[IF] (CONTEXT-1) (CONTEXT-2) ...] ;

Consider the following examples:

(a) REMOVE VFIN IF (-1 ART) ;

(b) REMOVE (N) IF (-1 (PERS NOM)) ;

(a) will remove finite verb readings (the target) from a cohort, if the one immediately to the left
(-1) contains an article tag, while (b) will remove noun readings in the presence of an
immediately preceding personal pronoun in the nominative, thus disambiguating nominal-verbal
ambiguities like hit in � the hit/they hit� .

Note that the target VFIN is a defined set (e.g. consisting of tense or mode tags), while the
target (N) is a simple tag, declared as a set on-the-fly by using parentheses.

 3.4.1 OPERATION:

Eckhard Bick, CG-3 how-to 4/2009

(a) REMOVE

Removes a reading from a cohort, if it contains a TARGETed tag - unless this reading is the
last surviving reading. In the case of morphological or PoS tag this means that one (entire)
reading line, in a cohort of readings for a given token, will be removed - for instance the
reading line "comer" V PR 1S IND will be removed from the analysis cohort of "como", if
either the V (verb) or PR (present tense) tags are TARGETed by a successful REMOVE rule,
leaving the "como" ADV reading to survive. If the target is a MAPped tag with the predefined
prefix (for syntax, usually a @-tag), it is removed from the reading line, and if it is the only or
last surviving MAPped tag, the whole reading line will be removed (unless it is the last
reading line in the cohort). If you explicitly wish to allow the removal of a last reading, you
can do so using the rule option UNSAFE, i.e. REMOVE UNSAFE (TAG) IF, or globally
through the � unsafe flag (which can be overriden locally by the SAFE option).

(b) SELECT

Selects a reading, if it contains a TARGETed tag. In practice, selection is equivalent to a
removal of all other readings. In the case of @-tag target, the reading line is cleared of all
other @-tags.

In ordinary mode, each operation will immediately affect (narrow) the contexts of subsequent
rules. This progressive and interactive disambiguation is one of the core strengths of the CG
methodology and should not be overridden lightly, but if you do want to have a rule look at
already-deleted contexts, you can do so with the LOOKDELETED option. A softer variant is the
LOOKDELAYED option that will only look at information removed by a previous rule that has
been specifically scheduled for delayed removal with the DELAYED option. Individual contexts
(rather than a whole rule) can be made to see deleted material with the D-operator, and delayed-
removed material with the d-operator, e.g. (*-1d N-HUM). Finally, there is an IMMEDIATE
option to override a global � delayed flag.

 3.4.2 WORDFORM:

Optional part of a rule, restricting the rule to the wordform in question. Since the operation is
case sensitive, preprocessing (lowercasing) is necessary, if a rule targeting e.g. an English
noun also is to apply if the noun occurs in sentence-initial position. VISL grammars use
lowercasing of initials, storing the uppercase information as a tag (<*>) instead.

WORDFROM may be a set of wordforms, but the set must not include other tag types.
Otherwise, the WORDFORM condition works like a context condition for position 0 (self).

 3.4.3 TARGET:

Obligatory part of a rule. A target is always a set, either a predefined set from the SETS
section, or a tag string defined as a set on-the-fly by using parentheses, e.g. NOMINAL
(defined by LIST = N ADJ PCP) or (N) or (N F P). Using predefined sets as targets,
effectively fuses what in the cg-1 formalism was a same-context batch of multiple rules, into
one rule:

SELECT NOMINAL IF (-1C DET) ;

(same as 3 rules targeting (N), (ADJ) and (PCP) separately).

 3.4.4 CONTEXT:

One or more contexts can be used, but (heuristic) rules without any context are allowed, too.
Each context is enclosed in parentheses. Contexts are applied as AND-linked conditions, i.e.

Eckhard Bick, CG-3 how-to 4/2009

all conditions of a given rule must be true ("instantiated") for the rule to apply. A context
condition may contain the following elements:

(1) An obligatory position marker, consisting of a number indicating relative distance in
tokens. The default (positive number) is a right context, while a negative number indicates a
left context. A context can be negated by using NOT in front of the position marker. For
LINKed contexts (cp. below), NOT negates (only) the immediate context conditions (to
which the adjacent position marker applies), while NEGATE is used to � open a negation
bracket� , where the remaining (LINKed) contexts are negated as a whole.

(2) An asterisk (*), prefixed to the position marker number means "unbounded context". In this
case, a context condition has to be true all the way to the left (-) or right (+) sentence
boundary - even if the context search should cross the TARGET position (position 0)1. A
positive unbounded context condition is instantiated at the closest possible position - unless
a double asterisk (**) is used, which will allow instantiation at the second or later
occurrence. Later instantiation is relevant only in the presence of LINKed contexts (which
might not be true of the first, but yes a later occurrence of the original condition). An at-sign
(@) in front of a position number means absolute context, e.g. @1 for the first token/cohort,
@2 for the second, and @-2 for the second-but-last token/cohort in the sentence.

(3) In CG-3 it is possible to search for the same context both left and right at the same time.
This is called the nearest neighbour test, and is expressed by using the � magic� position 0,
e.g. (NOT 0* VFIN) to exclude finite verbs in the whole sentence

(4) An obligatory context condition consists of a (position-restricted) set (or set-ified tags or
tag sequences). As elsewhere, sets may be combined by set operators: OR (or '|', union), +
(concatenation in one and the same reading line). The old Vislcg AND (or '+', intersection,
both tags in the same cohort, but not necessarily in the same reading), has been deprecated
in favour of the equivalent LINK 0.

(5) A C (careful) condition attached to the position number means that the context condition
has to be a safe (i.e. the only) reading of the cohort in question. For instance, (-1C N)
denotes an unambiguous noun one position to the left (i.e. left adjacent). A word with both a
noun (N) and a verb (V) reading in this position would not fulfill the context condition.

(6) An optional linked context, where the word LINK chains 2 contexts (within the same
context parenthesis). The second, linked context condition is written in the same fashion as
the first one, but its relative position is calculated from the instantiated first context rather
than the rule target. In other words, each LINK resets the context position to 0. In this way,
it is possible to to create arbitrarily long chains of LINKed context conditions. In practice,
all links in achain point to the same side (i.e. either right or left), but in theory, a change of
direction is allowed.

(7) An optional barrier context, where the word BARRIER is used right after an unboundad
context (*-context). A barrier context blocks the preceding context search, if the barrier
condition is instantiated before the unbounde context can be instantiated. As usual, barrier
contexts may consist of sets, set-ified tags or set combinations, but do not need a postion
marker. For instance, (*1 VFIN BARRIER CLB) looks for a finite verb (VFIN) anywhere to
the right (*1), but only if there is no interfering clause boundary (CLB) in between. A
subordinator or comma would thus block further VFIN-searching. The BARRIER keyword
can be used in careful mode, too (CBARRIER), where only unambiguous readings will
block the search.

1 In CG1, unbounded searches were not allowed to back-cross the 0-position, so in order to facilitate porting of
older grammars, CG3 support a � no-pass-origin flag to emulate this behaviour.

Eckhard Bick, CG-3 how-to 4/2009

(8) In order to continue a context search across window boundaries, use Span Left (<) and
Span Right (>) as a pre- or postfix for the position block, e.g. <*-1 (left) or >*1 (right).
Using 'W' instead of the arrows will allow a span to search in both directions. As a default,
the span covers 2 windows left and 2 windows right of the focus window, but the number
can be set arbitrarily with the � num-windows command line flag. For instance (*-1 >>>
LINK -1W (� <:>�) LINK -1 V-QUOTE) will check if the preceding sentence ends in a
colon, after a quoting verb, making the second senteces a quotation � object� of the first.

3.5.Mappings

A MAPPING-rule has the following gerneal layout:

 OPERATION (MAPTAG-1 MAPTAG-2 ...) (TARGET) IF (CONTEXT-1) ... (CONTEXT-n)

The following rule, for instance,

MAP (@SUBJ> @ACC>) TARGET N OR (PERS NOM)

IF (NOT *-1 NON-PRE-N) (1C VFIN) ;

will map potential subject and accusative object tags onto nouns an personal pronouns in the
nominative, if there are no non-prenominals to the left (i.e. if the np in question is the first in the
sentence), and if a safe (C) verb follows immediately to the right.

Mapping rules add tags to a cohort line (i.e. reading), if that line contains a certain TARGET tag
or matches a certain TARGET set, and if certain optional CONTEXTs are fulfilled. Context
conditions are expressed as in the CONSTRAINT section, and sets are used and constructed in
the usual way. Any kind of tag may be added. However, only mapped tags with a special
mapping-prefix (by default, @) will be treated as real mapped_tags. Mapped_tags are
traditionally syntactic tags, added and disambiguated on one cohort line (itself representing a
PoS/inflexion reading), but can be higher level tags, like semantic role tags or named entity tags.
During disambiguation, @tags will be cut down to the last reading on a given line. If there is
only one reading line in the cohort, this last @tag is untouchable, otherwise the whole reading
line dies together with its last @tag. When calling a grammar with Vislcg3, the @-prefix may be
changed by using the � prefix ... flag.

The following OPERATIONs are allowed in mapping rules:

� MAP: This is the general mapping operator. It is a feature of the special @tags, that MAP
rules cannot apply if the targeted cohort line already contains one or more @tags (from an
earlier MAP rule or the lexicon). Thus, if ambiguity is desired, the @tags in question have
to be MAPped at the same time (i.e. by the same rule). In order to allow further mapping,
ADD rules have to be used instead of MAP rules.

� ADD: Mapping of @tags is performed independently of the presence of other @tags on the
cohort line. Thus, @-mapping may continue until a MAP rule "closes" the @tag-list for a
given cohort line.

� REPLACE: This is a CG-2 operator deprecated in Vislcg and CG-3 in favour of the more
powerfull SUBSTITUTE operator. REPLACE deletes all tags but the first one (normally
the lexeme tag), and adds the mapped tags instead.

Unlike constraint rules, mapping-rules are applied exactly once and mapping rule sections are not
rerun together with higher order constraint sections. To ensure this behaviour, mapping rules
should be located within a MAPPING section (also called BEFORE-SECTIONS in CG-3).
Mapping rules in the same grammar (section?) cannot use earlier mapped tags as contexts.

Eckhard Bick, CG-3 how-to 4/2009

3.6.Corrections/Substitutions

Correction rules (or � more neutrally - Substitution rules) are used to correct faulty input - for
instance from a probabilistic tagger or an earlier CG, or in a spell/grammar checker - by
replacing tags with other tags. Deletion can be handled by nil-replacements, and insertion by
replacing a tag with an appended version containing also the new, inserted tag.

The general shape of a correction rule is the following:

SUBSTITUTE (TAG-1) (TAG-2) TARGET (TAG-3) IF (CONTEXT-1) ... (CONTEXT-2)

Here, TAG-1 is replaced with TAG-2 in cohort lines that contain the target tag TAG3 with
(optional) context conditions structured in the usual fashion. As usual, on-the-fly sets (as in the
example) can be used on par with predefined or combined sets. For instance, the following rule:

SUBSTITUTE (PRON) (CONJ) TARGET (� that�) IF (-1 T:pp LINK -1 <v-speak>)

corrects a pronoun-� that� reading (e.g. from a probabilistic PoS tagger) into a conjunction.-� that�
reading, if � that� is preceded by a prepositional-phrase template (T:pp) and the a speech verb: He
had promised on an earlier occasion that he would not interfere.

Substitution rules are also a work-around for changing tag lines after � closure� with a @-tag.
Even @tags themselves can be changed, removed or appended this way:

SUBSTITUTE (@SUBJ) (@SUBJ @ACC) TARGET (N) (-1 >>>) (1 (PERS NOM)) ;

(a previously safe noun subject is assigned object ambiguity at sentence initial position if the
next word to the right is a personal pronoun in the nominative: 'Fish I do like.')

For deletions, use SUBSTITUTE (deletable) (*) TARGET ...2

For adding secondary tags, use SUBSTITUTE (PoS) (<secondary> PoS) TARGET ..., where
PoS is a part-of-speech tag. Since the PoS tag is conventionally the first primary (morphological)
tag in a cohort line, this will ensure that the new secondary tag is placed correctly between
lexeme/lemma tag and morphological tags.

4. Dependency

Traditional Constraint Grammar syntax can be described as flat dependency syntax, with
directional attachment markers at least at the group level, and in newer grammars also at the
clause constituent level, allowing postprocessing with a dependency generator. CG-3 is the first
public Constraint Grammar implementation that allows direct reference to dependency links, as
well as from-scratch insertion of dependency arcs.

Dependency tags have the form #n->m, where n is the daughter token id and m is the mother
token id. Annotated input data has to adhere to this convention in order to be accessible to the
CG rules.

2 The (*) denotes a magical � deletion tag� , that could also simply be empty, ().

Eckhard Bick, CG-3 how-to 4/2009

There are 3 possible dependency references, to be used instead of the ordinary position markers
in contexts conditions:

p (parent, mother)
c (child, daughter)
s (sibling)

ADD (§AG) TARGET @SUBJ (p V-HUM LINK c @ACC LINK 0 N-NON-HUM) ;

(Add an AGENT tag to a subject reading if its parent verb is a human verb that in turn has a
child accusative object that is a non-human noun.)

In order to add dependency annotation to � virgin� input, the operators SETPARENT and
SETCHILD are used together with a TO target. Thus,

SETPARENT @FS-<ACC (*-1 (� que�) BARRIER CLB
 TO (**-1 <mv> LINK 0 V-COGNITIVE) (NOT 1 @<ACC);

will link a finite object clause (@FS-<ACC) with a que-complementizer to a main verb (<mv>)
anywhere to the left (**-1) if the latter is a cognitive verb (V-COG) and is not followed by an
ordinary direct object (@<ACC). If the subclause and mainclause verbs have the token id's #10
and #5, the result will be the following dependency tag:

... VFIN ... @FS-<ACC #10->5

Note that both the SET-target and the TO-target can have their own independent context
conditions, counting from their respective positions as zero. Attachment will thus be made to the
final match of the first context (i.e. parenthesis) after TO, while any further contexts after TO
will relate to attachment position as zero, not to the original zero of the SET-target.

CG3 has a built-in check against dependency loops, preventing SETCHILD from attaching if
doing so would create a loop. Instead, the rule will search onward for a valid, free parent that
does not form a loop relation with the target. A corresponding precaution is valid for
SETPARENT. This behaviour can be overridden with the ALLOWLOOP or the NEAREST
options. The former will opt for the last matching TO-target, the latter for the first.

Dependency relation operators can be combined with a number of options

● * (Deep scan) allows a child- or parent-test to continue searching along a straight line of
descendants and ancestors, respectively, until the test condition is matched or until the
end of a relation chain is reached.

● C (All scan) requires a child- or sibling-relation to match all chidren or all siblings,
respectively. Note that this is different from the ordinary C (= safe) option which applies
to readings. Thus 'cC ADJ' means 'only adjectives as children' � e.g. no articles or pp's,
while 'c (*) LINK 0C ADJ' means 'any one daughter with an unambiguous adjective
reading.

● S (Self) can be combined with c, p or s to look at the current target as well. For example,
'c @SUBJ LINK cS HUM' looks for a human subject np � where either the head noun
(@SUBJ) itself is human, or where it has a modifier that is tagged as human.

Eckhard Bick, CG-3 how-to 4/2009

Note also, that a NOT context negates the whole dependency relation rather than the conditions
linked to it. Thus , for nouns, (NOT c @>N) means 'no premodifier', while (c (*) LINK NOT 0
@>N) means 'at least one child that is not a premodifier [but a postmodifier]'.

Dependency tags may be referred to even if they are imported as part of the import cohorts,
created either by a non-CG module or by an earlier CG module in a grammar pipe. In this case
newly assigned dependencies will override old ones, but the input token numbering (and hence,
sentence separation) will be maintained in spite of the fact that the CG3 compiler internally uses
a running token numbering across sentence boundaries.

5. Other relational links than syntactic dependency

The default relation between tokens is the dependency relation, but the CG-3 formalism also
allows to add secondary dependencies, or other relations like anaphora relations, discourse
relations, secondary � semantic� dependencies etc. This is done using named relations:

SETRELATION (identity) TARGET (<rel>) TO (*-1 N) ;

(Set an � identity� relation from a relative pronoun to a noun occurring earlier in the sentence.)

This will yield the following as an additional tag on the pronoun reading: ID:n R:identity:m,
where R: introduces the relation name, n is the ID of the pronoun, and m the ID of the noun. The
two-way operator SETRELATIONS, with two label brackets, one for each end of the relation
arc, can be used to mark a given relation on both ends with different names, e.g. an experiencer-
stimulus relation.

Note that CG3 can use contexts across several sentence windows, and thus assign long range
relations, such as cross-sentence subject anaphora. This feature has not, however, been
thoroughly tested yet.

6. Interfacing with other descriptive systems and parsing
methodology

One of the design goals of CG3, and a motivation for continued development, is the desire to
allow Constraint Grammar to not only support its native descriptive paradigms, functional
dependency grammar and topological methods, but also to emulate other descriptive systems and
their parsing methodologies. From a principled point of view, three competitors have to be
considered � (a) generative grammar with a constituent tree notation, (b) unification grammar
and (c) probabilistics and machine learning.

CG3 adresses (a) in two ways: First, its deep dependency annotation simply allows the
transformation into constituen trees, creating various treebank formats - like the one used in the
PENN treebank � on the fly. An example of a program performing such a transformation, is the
author's dep2tree, supporting the VISL convention of constituent trees notation. Second, the core
idea of generative parsing � constituent bracketing � can in part be simulated using so called
TEMPLATEs.

On the other hand, CG3 was inspired by unification grammar (b) to allow the unification of
set variables across targets and contexts. Finally, probabilistic methods (c) have also been
accommodated for in the new formalism, by allowing reference to numerical tags expressing
statistical information learned from raw or annotated corpora.

Eckhard Bick, CG-3 how-to 4/2009

7. Templates

TEMPLATEs are labels for complex contexts conditions, which � once defined � can then be
used by many different rules, or even in other templates. For instance, an np could be defined as

(a) TEMPLATE np = ((? ART LINK 1 N) OR (? ART LINK 1 ADJ LINK 1 N))

(b) TEMPLATE np = ([ART, N] OR [ART,ADJ,N])

(c) TEMPLATE np = (? ART LINK *1 N BARRIER NON-PRE-N)

and then referenced as

(*1 VFIN LINK *1 T:np).

Note that templates can be defined either as a consecutive list of sets (b), in angular brackets, or
as a LINK'ed context (a, b), CG-style, in ordinary context brackets. Though the former is more
reminiscent of generative rewriting rules, the latter is more powerful, since it will allow complex
unbounded links (* - links) and thus can cover more cases in one and the same expression (c).

The linguistic motivation behind templates is to allow direct references to constituent units,
just as in generative grammar. Thus, classical constituent templates are designed to reduce
constituents to � terminals� - on par with cohort tags and sets, and will be used like the latter,
forming contexts together with an ordinary external position marker, as in the example above.

However, CG-internally, templates could also simply be interpreted as shorthand
(variables) for context parentheses, so-called context templates. As such, they logically need to
allow internal, predefined positions, as in the following example for a human verb-template,
where the motivation is not a constituent definition, but simply to integrate two context
alternatives into one3, and to label the result with one simple variable.

TEMPLATE v-hum = ((c @SUBJ + HUM) OR (*1 (� that� KS) BARRIER V))

Compiler-internally, both template types are processed in a similar way, which is why constituent
templates have question marks as place holders for an external position marker, which will be
inserted into the template by the compiler at run-time.

Constituent templates allow a direct conceptual transfer from generative rules. Thus, a simple
generative np grammar:

np = adjp? n pp? ;

adjp = adv? adj ;

pp = prp np ;

could be expressed in CG3 as:

 TEMPLATE np = ((N)

OR (T:adjp LINK 1 N)

OR (T:adjp LINK 1 N LINK 1 T:pp)

OR (N LINK 1 T:pp)) ;

 TEMPLATE adp = ((ADJ) OR (ADV LINK 1 ADJ)) ;

 TEMPLATE pp = (PRP LINK 1 T:np) ;

3 In traditional CG, this OR'ed expression could not even be expressed in one rule, let alone referenced as one
label.

Eckhard Bick, CG-3 how-to 4/2009

Like sets, templates can be combined, or even defined on-the-fly inside a rule. Note that a
separate set of partentheses is required for each level of template definition definition. For
instance, if you want a rule to act on either a left-hand human subject or a right hand object
clause (not possible in cg2), your can do so with:

SELECT (<v-hum>) ((*-1C HUM + @SUBJ>) OR (*1C @FS-<ACC)).

Here, to on-the-fly templates are OR'ed and encapsulated with a common set of parentheses. The
bidirectional *0 search is a special case of this, but only works with identical conditions both left
and right: REMOVE (VFIN) (*0C VFIN BARRIER CLB) ;

8. Set unification
CG3 allows the use of sets as to-be-unified variables, prefixing $$ before the set name. All
occurences of such a set in a given rule will be unified to mean the same set member, and the rule
operation will only apply if the set does have a member that satisfies all occurrences of the set in
both target and contexts at the same time. Note that in ordinary mode the set is instantiated the
first time it is met by the rule parser: If this is not in the target but in a context position, the rule
may be interpretad unintuitively because the rule compiler does not normally respect context
ordering, trying to optimize it for other goals such as speed. Therefore, if a $$-set only occurs in
contexts (and not in the target), the KEEPORDER option should be used.

Set unification could be simulated in CG2 only at the cost of considerable rule explosion. The
following example sed of semantic roles (agent, patient, theme and location):

 LIST ROLE = §AG §PAT §TH §LOC ;
 SELECT $$ROLE (-1 KC) (-2C $$ROLE) ;

would thus have to be written with 4 rules instead of one:

 SELECT (§AG) (-1 KC) (-2C (§AG)) ;
 SELECT (§PAT) (-1 KC) (-2C (§PAT)) ;
 SELECT (§TH) (-1 KC) (-2C (§TH)) ;
 SELECT (§LOC) (-1 KC) (-2C (§LOC)) ;

9. Numerical matches

For the first time, the new CG-3 formalism allows flexible integration of statistical data,
frequency thresholds and confidence values directly in the Constraint Grammar framework � a
feature CG2 and Vislcg could only approximate through the use of <Rare> sets and heuristic
section chunking of grammars. The option should be paving the way for hybrid systems
integrating both hand-crafted linguistic rules and raw probabilistic corpus data.

A numerical is of the type <TYPE:number>, where TYPE is a label, and number is an integer
assigned to TYPE. Examples are lexical frequencies drawn from a corpus, or confidence values in
a spell or grammar checker. CG contexts and targets can make use of the numerical tags with
either =, < or > plus the combinations >= and <=. Thus, on a relative lexical probability scale
between 0 and 100:

REMOVE (<f<10> N) (0 (<f>60> V)) (1 N) ;

Eckhard Bick, CG-3 how-to 4/2009

will remove noun readings with a lowere-than-10% probability in the presence of a higher-
than-70% probability for a verb reading, if there is another noun candidate immediately to the
right.

Minimum and maximum values can be selected or removed from a cohort by using MIN and
MAX, respectively. In its simplest form, this feature can be used as a last heuristics, after
ordinary rules:

SELECT (<f=MAX>) ;

or

REMOVE (<f=MIN>) ;

Note that the former will also remove readings with no f-value given, while the latter will keep
them, following the intuitively most likely interpretation of the rules purpose.

10. Regular expressions

Another innovation in CG-3 is the use of regular expressions for word forms, base forms and
secondary tags (<...> angle-bracketed tags. An interpretation of a tag as a regular expression is
forced by appending a 'r' after the tag:

● � .*ize� r to match certain transitive verbs in English
● <[HA].*>r to match semantic prototype tags for animates, i.e. humans (e.g. <Hprof>)

and animals (e.g. <Aorn>).

Another literal string modifier, used in the same fashion as 'r', is 'i', indicating case-insensitivity.
The two can be combined, e.g. �� ir .

11. Grammar-text interaction

There are numerous possibilities in the CG-3 formalism to influence the interaction of the CG
grammar and its input data. Thus, parameters can be set in the grammar or command-line for

● triggering the use or non-use of certain rule sections
● changing window delimiters on the fly
● naming and referencing rules
● setting external, corpus-driven parameters on the fly, such as domain or genre

For these and other options, please refer to our CG-3 page on
http://beta.visl.sdu.dk/constraint_grammar.html
where you can also find a CG laboratory interface to test some of the options in this tutorial.

12. Tracing

Tracing of rule applications on a text texts allows the grammarian to debug his grammar.

http://beta.visl.sdu.dk/constraint_grammar.html

Eckhard Bick, CG-3 how-to 4/2009

As a default, rules are traced using their line number, but an optional rule name can be added to
each rule operator with a colon, e.g. REMOVE:rule_name. With the � trace-name-only command
line option, line numbers will be suppressed for named rules.

In ordinary tracing mode, removed lines will still be shown, but prefixed with a semicolon. To
prevent this behaviour, and see only surviving lines, use --trace-no-removed.

13. Binary grammars

The CG3 rule compiler can build binary grammars, rather than parse rules from scratch eacht
time. The two main advantages of binary grammars are (a) speed and (b) data protection, for
commercial applications.

vislcg3 -C ISO-8859-1 -g rulesfile --grammar-only --grammar-bin binfile

A Perl support tool, cg3-autobin.pl - to be used instead of the ordinary vislcg3 command, with
the same command line options - will compile a grammar to binary form the first time and re-use
that on subsequent runs for the speed boost.

Eckhard Bick, CG-3 how-to 4/2009

14. Sample rules file

The following is a sample file for a Portuguese Constraint Grammar. with the classical sections
of delimiters, sets, mappings and constraints. Note that the mappings sections is sandwiched
between two constraint sections � the first for part of speech and morphology, the second for
syntax. This way, mapping rules will apply to partially disambiguated cohorts rather than all
readings. For more complex grammars, with iterative constraint sections, this effect is usually
achieved by using a 2-grammar architecture, or by running the same grammar with 2 different �
sections options, keeping morphological and syntactic rules separate in 2 consecutive modules,
with mapping applied as a pre-stage for the second (syntactic) grammar.

DELIMITERS = "<.> "<!>" "<?>" ; # sentence window

SETS
LIST NOMINAL = N PROP ADJ PCP ; # nominals, i.e. potentieal nominal heads
LIST PRE-N = DET ADJ PCP ; # prenominals
LIST P = P S/P ; # plural
SET PRE-N-P = PRE-N + P ; # plural prenominals, equivalent to (DET P) (DET S/P) (ADJ P)

(ADJ S/P) (PCP P) (PCP S/P)
LIST CLB = "<,>" KS (ADV <rel>) (ADV <interr>) ; # clause boundaries
LIST ALL = N PROP ADJ DET PERS SPEC ADV V PRP KS KC IN ; # all word classes
LIST V-SPEAK = "dizer" "falar" "propor" ; # speech verbs
LIST @MV = @FMV @IMV ; # main verbs
CONSTRAINTS
REMOVE (N S) IF (-1C PRE-N-P) ; # remove a singular noun reading if there is a safe plural

prenominal directly to the left.
REMOVE NOMINAL IF (NOT 0 P) (-1C (DET) + P) ; # remove a nominal if it isn't plural but

preceded by a safe plural determiner.
REMOVE (VFIN) IF (*1 VFIN BARRIER CLB OR (KC) LINK *1 VFIN BARRIER CLB OR

(KC)) ; # remove a finite verb reading if there are to more finite verbs to the right none of
them barred by a clause boundary (CLB) and coordinating conjunction (KC).

"<que>" SELECT (KS) (*-1 V-SPEAK BARRIER ALL - (ADV)) ; # select the conjunction
reading for the word form 'que', if there is a speech-verb to the left with nothing but advers in
between.

MAPPINGS
MAP (@SUBJ> @ACC>) TARGET (PROP) IF (*1C VFIN BARRIER ALL - (ADV)) (NOT -1

PROP OR PRP) (NOT *-1 VFIN) ; # a proper noun can be either forward subject or forward
direct object, if there follows a finite verb to the right with nothing but adverbs in between,
provided there is no proper noun or preposition directly to the left, and a finite verb anywhere
to the left.

CONSTRAINTS
REMOVE (@SUBJ>) IF (*1 @MV BARRIER CLB LINK *1C @<SUBJ BARRIER @MV) ; #

remove a forward subject if there is a safe backward subject to the right with only one main
verb in between

	1.Command-line usage:
	2.The rules file
	3.The individual elements and functors of a CG grammar file
	3.2.Delimiters
	3.3.Set definitions
	3.4.Constraints
	3.5.Mappings
	3.6.Corrections/Substitutions

	4. Dependency
	5. Other relational links than syntactic dependency
	6. Interfacing with other descriptive systems and parsing methodology
	7. Templates
	8. Set unification
	9. Numerical matches
	10. Regular expressions
	11. Grammar-text interaction
	12. Tracing
	13. Binary grammars
	14. Sample rules file

