
ML-Optimization of Ported Constraint Grammars

Eckhard Bick
University of Southern Denmark

Campusvej 55, DK-5230 Odense M
Email: eckhard.bick@mail.dk

Abstract

In this paper, we describe how a Constraint Grammar with linguist-written rules can be optimized and ported to another language
using a Machine Learning technique. The effects of rule movements, sorting, grammar-sectioning and systematic rule modifications
are discussed and quantitatively evaluated. Statistical information is used to provide a baseline and to enhance the core of manual
rules. The best-performing parameter combinations achieved part-of-speech F-scores of over 92 for a grammar ported from English to
Danish, a considerable advance over both the statistical baseline (85.7), and the raw ported grammar (86.1). When the same technique
was applied to an existing native Danish CG, error reduction was 10% (F=96.94).

Keywords: Constraint Grammar, Machine Learning, Tagging

1. Introduction
Mature Constraint Grammar (CG) parsers can achieve
very high accuracy (Karlsson et al. 1995), but contain
thousands of manually crafted rules and depend on large
amounts of expert labor. Input to a Constraint Grammar is
traditionally provided by a lexical-morphological
analyzer1 that outputs tokens with one or more possible
readings (tag lines) attached. The task of a CG rule is then
to contextually remove wrong readings, select correct
ones, and to add and disambiguate tags that can only be
inferred in a contextual way, such as syntactic function,
dependency and semantic roles.

A typical CG rule contains an a target (word form, lemma,
tag or feature set), a tag/reading-manipulating action (e.g.
REMOVE, SELECT, MAP, ADD, SUBSTITUTE,
SETRELATION), and a list of one or more context
conditions to be fulfilled in order for the action to be
triggered. Context conditions may refer to words or
features at an arbitrary distance in the sentence (or
beyond), they may contain variables, regular expressions
or numerical (e.g. frequency) conditions, and they can be
negated, linked or conditioned as safe (referring only to
unambiguous readings). Finally, unbounded conditions
(i.e. without a distance position) may be "BARRIERed"
by blocking features. The following (Spanish, French,
German or Danish) rule, for instance, removes target
readings that contain a finite verb tag (VFIN2) in favour

1 In the CG3 variant of the Constraint Grammar formalism, the
introduction of variables and regular expressions makes it
possible to perform morphological analysis within the
grammar itself, but most systems only use this feature as a
reserve method to handle out-of-vocabulary tokens.

2 VFIN, NPHR and ATTR are not actual tags, but examples of
tag sets defined by the grammarian. Thus, VFIN comprises
tense tags such as PR (present) or PAST, ATTR contains
adjectives and participles, and NPHR amounts to all parts of
speech allowed in a noun phrase chain (N, ADJ, ART, DET
etc.).

of a noun reading (N) - IF an article (ART) or determiner
(DET) is found to the left (*-1) with nothing but attributes
(ALL - ATTR) inbetween (BARRIER), and if there is
gender-number agreement ($$GN variable) between noun
and article/determiner. As a safety measure, a second,
negative (NOT) condition is present disallowing a noun
phrase element (NPHR) at position 1 (i.e. immediately to
the right of the target).

REMOVE VFIN IF (0 N + $$GN) (*-1C3 ART OR DET
BARRIER ALL - ATTR LINK 0 $$GN) (NOT 1 NPHR);

Since Constraint grammars are not data-driven in the
statistical sense of the word, domain adaptation, for
instance for speech (Bick 2012) or historical texts (Bick
2005), is traditionally achieved by extending an existing
general grammar and/or its lexicon. However, due to its
innate complexity, the general underlying grammar as a
whole has properties that do not easily lend themselves to
manual modification. Changes and extensions will usually
be made at the level of individual rules, not rule
interactions or rule regrouping, the effect of which is very
difficult for a human grammarian to predict.

In particular, incremental contextual ambiguity reduction
may activate dormant rules waiting for unambiguous
context conditions to apply. Feed-back from corpus runs
will pinpoint rules that make errors, and even allow to
trace the effect on other rules applied later on the same
sentence, but such debugging is cumbersome and will not
provide information on missed-out positive, rather than
negative, rule interaction. Therefore, optimization of
rule-interaction (i.e. rule management at the
grammar-level) is a major, and intrinsic, difficulty linked
to the Constraint Grammar approach.

3 The C means "unambiguous". With a C, the context would
match also words that still have other readings on top of ART
or DET.

In (Bick 2013), we have shown that machine learning
techniques can be applied to monolingual grammar
tuning, even with reduced grammars. Building on this
research, we intend to show that ML is effective not only
for optimizing grammars, but also for porting them from
one language to another, a task that can be regarded as an
extreme variant of domain adaptation. For the
experiments presented here, we have ported the
part-of-speech/ morphological section of an English
grammar (EngGram) into Danish, using a CG-annotated
section of the Danish treebank (Arboretum, Bick 2003)
for training and evaluation.

2. Related work
To date, little work on CG rule tuning has been published.
A notable exception is the µ-TBL system proposed in
(Lager 1999), a transformation-based learner working
with 4 different rule operators, and supporting not only
traditional Brill-taggers but also Constraint Grammars.
The system could be seeded with simple CG rule
templates with conditions on numbered context positions,
but for complexity reasons it did not support more
advanced CG rules with unbounded, sentence-wide
contexts, barrier conditions or linked contexts, all of
which are common in hand-written Constraint Grammars.
Therefore, while capable of building automatic grammars
from rule templates and modeling them on a gold corpus,
the system was not applicable to existing,
linguist-designed CGs.

That automatic rule tuning can capture systematic
differences between data sets, was shown by
Rögnvaldsson (2002), who compared English and
Icelandic µ-TBL grammars seeded with the same
templates, finding that the system prioritized right context
and longer-distance context templates more for English
than Icelandic. For hand-written grammars, rather than
template expression, a similar tuning effect can be
expected by prioritizing/deprioritizing certain rule or
context types by moving them to higher or lower rule
sections, respectively, or by inactivating certain rules
entirely.

Lindberg & Eineborg (1998) conducted a performance
evaluation with a CG-learning Progol system on Swedish
data from the Stockholm-Umeå corpus. With 7000
induced REMOVE rules, their system achieved a recall of
98%. An F-Score was not given, but since residual
ambiguity was 1.13 readings per word (i.e. a precision of
98/113=86.7%), it can be estimated at 92%. Also, the
lexicon was built from the corpus, so performance can be
expected to be lower on lexically independent data.

Though all three of the above reports show that machine
learning can be applied to CG-style grammars, none of
them addresses the tuning of human-written, complete

grammars rather than lists of rule templates4. In this paper
we argue that this is possible, too, and that it can lead to
better results than both automatic and human grammars
seen in isolation. In particular we demonstrate that ML
CG-tuning is useful to create seeding grammars for new
languages from an existing template grammar in another
language. Though such a ported seeding grammar cannot
be expected to compete with mature taggers directly, it
does provide a robust basis for human grammar creation,
and will help to reduce overall development time for
high-quality rule-based taggers for under-ressourced
languages5.

3. Grammar optimization and adaptation
techniques

For our experiments, we divided the Danish gold corpus
(70.800 tokens) randomly into 10 sections, using 90% for
training and 10% for evaluation. Because of CPU runtime
constraints, most parameter variations were tested with
only one split, but for the best parameter combinations,
10-fold cross-validation was carried out with all 10
possible splits.

For each individual training run, the CG-compiler was run
in trace mode, allowing the optimizer program to count
how often each individual rule was used, and what its
error percentage was. Based on these counts, the
optimizer modified rule order or rule strictness (i.e. the
degree of context ambiguity allowed for the rule in
question).

3.1. Rule movement
The following rule movements were implemented:

• (a) promote good rules: moving a rule up one section,
i.e. allowing it to be applied earlier, before other,
more heuristic rules

• (b) demote dubious rules: moving a rule down one
section, i.e. having it apply later, after other, safer
rules

• (c) remove bad rules from the grammar, by moving
them to a special "kill" section.

Bad rules were defined as rules that made more wrong
than correct choice, while rules were regarded as good or
dubious, if their error percentage was below or above
certain empirically established error percentages (12.5 and

4 One author, Padró (1996), using CG-reminiscent constraints
made up of close PoS contexts, envisioned a combination of
automatically learned and linguistically learned rules for his
relaxation labelling algorithm, but did not report any actual
work on human-built grammars.

5 Danish is a small language, but not generally regarded as
under-ressourced. It was chosen as target language only as a
model, and because a gold corpus did not have to be
constructed from scratch. In a production setting, both the
creation of a gold corpus and manual completion of the ported
grammar would be part of the work flow.

25, respectively6). Training runs were iterated to allow a
rule to migrate up or down through the grammar's
different heuristicity sections.

Of course it is also possible to reorder rules
simultaneously rather than individually, by sorting rules
according to a quality metric. However, experiments
showed that it is difficult to achieve positive effects by
sorting, at least when using actual rule error frequency as
the only parameter, probably because this method does not
really allow for the modeling of rule interaction - a rule
that performs well may do so only because previous rules
prevented it from making errors, which is why it needs to
be tested individually and moved up incrementally rather
than by sorting. Thus, sorting worked relatively best when
human rule ordering was taken into account, by sorting
sections individually and by weighting rule quality with a
section factor. Only when each rule was run and evaluated
in isolation, did sorting work well, albeit at a prohibitive
time cost (20 hours, without iteration).

3.2. Rule strictness
Due to the complexity of CG rules, and the vast amount of
possible context conditions, it is much more difficult to
systematically vary, let alone create, rules than to move
them. However, rules can be made more or less cautious
without actually changing their context conditions, by
adding or removing the so-called C-option for the
individual context conditions. For instance, "*-1 VFIN
BARRIER NON-ADJ/DET" is a context condition that
looks left (*-1) until it finds a finite verb (VFIN), but can
be blocked (BARRIER) if a non-prenominal (defined as
something that is not an adjective or determiner) is found
in between.

This condition can be made more cautions by using *-1C
or less cautious by using CBARRIER. The former
restricts the VFIN context to mean only unambiguous
finite verbs, while the latter relaxes the blocking condition
to words that unambiguously are something other than
ADJ or DET. The optimizer uses C-relaxation for
promoted (low-error) rules, and "C-stricting" for demoted
(high-error) rules, either in situ or by cloning the rule with
the changed C-condition. Obviously, relaxed clone-rules
carry an added error risk, and are therefore added at the
end of the grammar, to be moved up in later iterations if
they perform well. A third relaxation technique was to
clone a rule by moving its wordform condition, i.e. letting
it apply in general rather than only for a certain
problematic or high-frequency token.

3.3. Translation
An obvious problem for a ported grammar is that all token
and lemma contexts, as well as word set definitions, are in

6 Raising the threshold improved recall, lowering it improved
precision, but F-scores were lower in both cases.

the wrong language. We therefore wrote a
machine-translation script that identified and translated
English words occurring in rules or definitions. In
addition, an effort was made to translate tags for valency
potential, since these may contain references to
prepositions and adverbs. As can be seen in section 4, this
improved recall and decreased precision, with a combined
F-score effect that was negative for the baseline run, but
further improved optimized grammars. Apart from MT
errors, the likely reason for this is that English and Danish
are not "isomorphic" enough for this method to work
automatically - there is simply no guarantee that
ambiguity will reside in the same words, or that verbs
bind the same prepositions. However, while we are only
concerned with automatic tuning here, limited human
effort would suffice to chose the correct analogues and
improve performance.

3.4. Rule templates
Though the word class inventory of Danish is similar to
that of English, there is no guarantee that an English
grammar will contain rules addressing all disambiguation
combinations that are relevant for Danish. Similarly, even
simple bigram contexts may be absent if they are relevant
only for Danish, and not for English. For instance, articles
are unambiguous in English, but not in Danish, where
they exhibit number and gender, and overlap with
pronouns and numerals. We therefore added 1024 rule
templates with ±1(C) contexts, for all possible PoS
combinations, to the ported grammar to allow the ML
system to fill in any coverage gaps.

4. Results
To establish a baseline, we ran a mini-grammar with only
one rule (SELECT <fr=MAX>), choosing the most likely
reading for each token, based on corpus frequency. While
the raw English grammar7 performed only marginally
better than this baseline when run on Danish input (with a
lower recall and a higher precision), it improved
considerably when subjected to ML-optimization (error
reduction amounting to 40% relative improvement). The
table below shows results for various tuning options on
top of rule killing (K), demoting (D), C-relaxation8 (r) and
C-stricting (s), with a 9:1 training-testing split for the gold
corpus9.

7 The Danish input contained frequency information, and the
English template grammar used the SELECT <fr=MAX> rule
at the end, to remove any ambiguity remaining after the
ordinary, context-based rules.

8 Separating C and BARRIER relaxation was also tried, with no
marked difference. Adding relaxed rules in situ rather than at
the end, led to F-scores below the baseline.

9 Results are test corpus performance at that iteration where
training corpus performance stabilized or peaked. Slightly
higher test F-scores may occur at later or earlier iterations, but
using them to decide on the final grammar would make the
test corpus part of the training setup.

iteration Recall
(%)

Precision
(%)

F-score

fMAX baseline 0 88.67 82.94 85.71

raw ported
grammar

0 87.40 84.83 86.10

ported grammar
with MT
translations

0 90.65 81.37 85.76

DKrst, -fMAX 7 94.45 84.00 88.92

PDKrs, +fMAX 7 91.76 88.99 90.35

PDKrst, -fMAX 6 91.77 89.11 90.42

PDKrst, +fMAX 10 92.45 89.75 91.08

PDKrsw, +fMAX 22 93.57 88.83 91.14

PDKrstw,
+fMAX

14 92.20 90.29 91.23

PDKrstw,
pos-ified fMIN

30 92.69 90.32 91.49

Table 1: Cross-language grammar porting: PDK
optimization plus variants

The data indicate that adding rule promoting (P),
translation (t), frequency fail-safe (fMAX or fMIN) and
wordform relaxation (w) each individually contributed to
overall F-score improvement, though recall in isolation
can be further maximized by adding only using translation
to a simple DKrs combination. The top result was
achieved with a more cautious frequency fail safe, where
the lowest frequency reading was removed for each 15
PoS classes separately, rather than selecting the highest
frequency reading, allowing the safest fMIN rules to
migrate up through the grammar. Tenfold cross-evaluation
confirmed this result, with an F-score increase of 5
percentage points over the baseline, corresponding to a
37% error reduction.

R dR P dP F dF

PDKrstw, pos-ified
fMIN

92.65 4.94 90.46 5.16 91.54 5.05

PDKrstw, pos-ified
fMAX

92.73 4.86 90.09 4.88 91.39 4.87

Table 2: 10-fold cross-validation

Finally, two additional techniques were tested - rule
templates and individual rule evaluation. Both beat the
ordinary optimization runs, but while the template run
profited from PDK movements in an ordinary way, the
individually sorted rules behaved more like a monolingual

human grammar in that they did not tolerate promoting10,
while still allowing slight increases from rule-killing and
demoting.

iteration Recall
(%)

Precision
(%)

F-score

individual rule sorting,
+fMAX

1 92.92 90.55 91.76

individual rule sorting,
+ unused rules

1 92.88 90.74 91.80

individual rule sorting,
+fMIN

1 93.04 90.69 91.85

PDKrstw, pos-ified
fMIN, templates

5 93.11 91.35 92.22

individual rule sorting,
+PDKrstw
(i.e. no promoting),
+fMAX,

18 93.68 91.14 92.39

Table 3: Rule templates and individual rule sorting

Of course, F-scores of around 92 do not approach
state-of-the-art for PoS tagging, which for many
languages can be as high as 96-97. However, it should be
born in mind that our method has been developed in the
framework of a rule-based, not a statistical parsing
paradigm, and that the tuned grammar provides a
reasonable and time-saving point of departure for the
manual correction and addition of target-language rules.
Furthermore, since the ML technique is
language-independent, it could then be repeated in a
second round of monolingual optimization. In order to
estimate this potential, the same tuning technique was
applied to a full-size, native Danish CG. In this
experiment, a 10% error reduction was achieved even
with an input grammar that performed at the 96%
accuracy level.

iteration Recall
(%)

Precision
(%)

F-score

Danish grammar before
optimization

0 97.65 95.44 96.54

PDKrsfw 1 97.61 95.77 96.68

PDKrsfw + fMAX 1 97.61 95.87 96.73

PDKrsfw + pos-ified
fMIN

1 97.58 95.83 96.70

PDKrsfw + templates 1 97.58 95.83 96.70

DKrsfw (no promoting) 11 97.91 95.99 96.94

DKrsfw (no promoting) 14 97.91 95.99 96.94

10Possibly because a globally established rule order cannot be
improved by changes that are only measured locally

iteration Recall
(%)

Precision
(%)

F-score

+ fMAX

Table 4: Monolingual results for a mature grammar
(Danish)

As could be expected in a mature grammar, templates and
additional statistical fail-safes had almost no effect
compared to rule manipulation on its own (PDKrsfw).
Interestingly, the DK-run was the only one with a
sustained iteration gain, indicating that promoting
low-error rules does more harm than good in a full
grammar, possibly undoing beneficial effects from
demoting.

5. Perspectives
Obviously, the grammar tuning achieved with the methods
presented here does not represent an upper ceiling for
performance increases. First, with more processing power,
rule movements could be evaluated against the training
corpus individually and in all possible permutations,
rather than in-batch, eliminating the risk of negative
rule-interaction from other simultaneously moved rules11.
Second, multi-iteration runs showed an oscillating
performance curve finally settling into a narrow band
below the first maximum (usually achieved already in
iteration 1 or 2, and never after 3). This raises the question
of local/relative maxima, and should be further examined
by making changes in smaller steps. Finally, while large
scale rule reordering is difficult to perform for a human,
the opposite is true of rule killing and rule changes such as
adding or removing C-conditions. Rather than kill a rule
outright or change all C-conditions in a given rule, a
linguist might prefer to change or add individual context
conditions to make the rule perform better, observing the
effect on relevant sentences rather than indirectly through
global test corpus performance measures. Future research
should therefore explore possible trade-off gains resulting
from the interaction between machine-learned and
human-revised grammar changes.

6. References
Bick, E. (2003). Arboretum, a Hybrid Treebank for

Danish, in: Joakim Nivre & Erhard Hinrich (eds.),
Proceedings of TLT 2003 (2nd Workshop on Treebanks
and Linguistic Theory, Växjö, November 14-15, 2003),
pp.9-20. Växjö University Press

Bick, E. & Módolo, M. (2005). Letters and Editorials: A
grammatically annotated corpus of 19th century
Brazilian Portuguese. In: Claus Pusch & Johannes
Kabatek & Wolfgang Raible (eds.) Romance Corpus
Linguistics II: Corpora and Historical Linguistics
(Proceedings of the 2nd Freiburg Workshop on
Romance Corpus Linguistics, Sept. 2003). pp. 271-280.
Tübingen: Gunther Narr Verlag.

Bick, E., Mello, H., Panunzi, A. and Raso, T. (2012). The

Annotation of the C-ORAL-Brasil through the
Implementation of the Palavras Parser (2012). In:
Calzolari, Nicoletta et al. (eds.), Proceedings
LREC2012 (Istanbul, May 23-25). pp. 3382-3386.
ISBN 978-2-9517408-7-7

Karlsson, F., Voutilainen, A., Heikkilä, J. and Anttila, A.
(1995). Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text.
Natural Language Processing, No 4. Mouton de
Gruyter, Berlin and New York

Lager, T. (1999). The µ-TBL System: Logic Programming
Tools for Transformation-Based Learning. In:
Proceedings of CoNLL'99, Bergen.

Lindberg, N., Eineborg. M. (1998). Learning Constraint
Grammar-style Disambiguation Rules using Inductive
Logic Programming. Proceedings of COLING-ACL
1998: pp. 775-779

Padró, L. (1996). POS Tagging Using Relaxation
Labelling. In: Proceedings of the 16th International
Conference on Computational Linguistics, COLING
(Copenhagen, Denmark). pp. 877--882.

Rögnvaldsson, E. (2002). The Icelandic µ-TBL
Experiment: µ-TBL Rules for Icelandic Compared to
English Rules. Retrieved 2013-05-12 from
[http://hi.academia.edu/EirikurRognvaldsson/Papers]

	1. Introduction
	2. Related work
	3. Grammar optimization and adaptation techniques
	3.1. Rule movement
	3.2. Rule strictness
	3.3. Translation
	3.4. Rule templates

	4. Results
	5. Perspectives
	6. References

