
DanProof: Pedagogical Spell and Grammar Checking for Danish

Eckhard Bick
University of Southern Denmark
eckhard.bick@mail.dk

Abstract

This paper presents a Constraint Grammar-
based pedagogical proofing tool for Danish.
The system recognizes not only spelling
errors, but also grammatical errors in
otherwise correctly spelled words, and
categorizes errors for WORD-integrated
pedagogical comments. Possible spelling
corrections are prioritized from context, and
grammatical corrections generated by a
morphological module. The system uses both
phonetic similarity measures and traditional
Levenshtein-distances, and has a special focus
on compounding/splitting errors common in
modern Danish. As a classical spell-checker
DanProof achieves F-Scores over 95, and
F=88 if compounding correction is included.
With the maximal set of error types, 2/3 of all
errors are found in school essays, and
precision is 91.7%.

1 Introduction

Spell- and grammar-checking is not a new task,
and is integrated in many standard text editors
for the major languages. However, smaller
languages are not so well covered, and the
technology is very much inspired by what works
for English where simple list checking will
identify non-words, and correction suggestions
can be found with the editing distance measure
using the same list. However, the task is more
difficult for morphologically rich languages,
where word formation is too productive to allow
lists with good coverage. A special problem for
Danish is compounding, and standard, English-
style spell checkers tempt users to (wrongly)
split compounds into their parts just to satisfy
their spell-checker. This phenomenon can now
lead to a general tendency towards compounding
errors in especially informal writing in Danish.
Two other problems also deserve special
attention: First, many errors are grammatical in
nature rather than misspellings, and will lead to

words that do exist in the spelling lexicon, an
example being the confusion of finite and non-
finite verb endings in Danish (købe - køber),
which is considered a stigmatizing marker of
low-level education. Detecting this error is only
possible with context and true sentence analysis.
Second, depending on the user group, it is not
enough to come up with a loose list of similar
words as correction suggestions - only good
spellers will immediately see what the correct
form is. Bad spellers need a well-prioritized list,
or - if possible - just one suggestion, which is
also desirable for tasks in automatic tool pipes,
such as pre- and postprocessing of machine
translation (Stymne & Ahrenberg 2010) or as an
OCR module. To achieve such prioritization,
simple editing distance is not enough. Rather,
other factors, like phonetic similarity, compound-
part similarity, frequency and not least context
analysis, must be considered.

While initiatives like hunspell and the use of
finite state transducers (Pirinen & Lindén 2014;
Antonsen 2014), have addressed the variability
of morphologically rich languages, the use of
full-scale grammatical and sentence analysis is
rare. For the Scandinavian languages, the
Constraint Grammar (CG) approach (Karlsson et
al. 1995) has been used for this task (Arppe
2000; Birn 2000; Carlberger et al. 2004 for
Swedish; Hagen et al. 2001 for Norwegian), and
working systems are distributed by the Finnish
company Lingsoft Oy (www.lingsoft.fi). For
Danish, a CG-based spell- and grammar-checker
for developed with a special focus on dyslexics
(Bick 2006), and it is this system, that is the
point of departure for our current work. In the
following we will show how our own approach
makes use of morphological and syntactic
analysis for both the task of detecting errors and
the task of weighting correction suggestions.

2 System description

DanProof can be used as (a) a command-line tool
for corpus work, research or automatic spell-
checking of e.g. texts for machine translation, or
(b) an end user application with Word-integration
and pedagogical comments. The linguistic core
consists of four modules, (1) word based spell
checking and similarity matching, (2)
morphological analysis of words, compounding
and correction suggestions, (3) syntax-based
disambiguation of all possible readings, and (4)
context-based mapping of error types and
correction suggestions. In the current version,
levels (3) and (4) are actually run several times,
first safe error mapping followed by loose
morphological disambiguation, then full error
mapping followed by strict morphosyntactic
disambiguation, and finally a last round of error
mapping exploiting syntactic function tags and
(implicit) dependencies. Gender or number
agreement errors between determiners, adjectives
and nouns in an np are a good example for why
this is useful: If no error mapping is performed
before disambiguation, the latter may have
removed an agreement-conflicting noun reading
in favor of a verb reading already once the rule is
run. On the other hand, disambiguated context
may be necessary to decide which word, out of a
string of conflicting words, should be tagged as
wrong. Finally, long distance agreement, as
between subject and subject complement, can
only be safely resolved once syntactic relations
are established.

2.1 Classical spell-checking and similarity
matching

After tokenization, this is the first module of our
pipe and represents a classical spell-checker. The
error finder appends weighted lists of correction
suggestions to tokens that either figure in a
manually compiled error substitution list (5,800
entries), or that cannot be verified in the fullform
lexicon (1,100,000 word forms). The
substitution list allows both single- and multi-
word forms, as well as variable word parts, and
provides ready-made, similarity/likelihood-
weighted corrections. To find correction matches
from the fullform database, a special matching
algorithm was developed, using partial-match
databases rather than the full list (which would
mean a prohibitive time consumption). The
process is then repeated with a phonetically
trans-scribed version of the database. Common
permutations, gemination and mute letters are

taken into account, and in a novel approach,
consonant and vowel "phoneme skeletons" are
matched (e.g. 'straden' – stdn/áè). Next, the
Comparator computes grapheme (w=written),
phoneme (s=spoken) and frequency (f) weights
for each correction candidate, using, among other
criteria, word-length normalized Levenshtein
distances. The different weights are combined
into a single similarity value (with 40% below
maximum as a cut-off for the correction list), but
a marking is retained individually for the highest
graphical, phonetic and frequency match value.

2.2 Tagger/parser-based word ranking

It is a core feature of our methodology that the
ordinary rule body of a CG parser is used to
choose the contextually most acceptable word
from a list of correction suggestions. Thus, the
best correction candidates are submitted to
morphological analysis on par with the original
word form, an the result used as input for the
tagging stage1 of the DanGram parser2 (Bick
2001), whose about 6,000 rules, with their
implicit contextual and semantic knowledge, will
hopefully sort out the added ambiguity and
single out the correct suggestion3. Too much
ambiguity, however, can overwhelm the system,
and with multiple errors in the same sentence,
contexts become as ambiguous as the to-be-
disambiguated word itself and may prevent the
CG rules from working properly. Therefore, only
the top-ranking correction suggestions are used
and the most heuristic (= least safe) rules are
excluded at this stage. For DanProof, we also
added disambiguation rules specifically targeting
spell-checker-suggested forms, and to be run
before DanGram proper.

Unlike the original version of the spell-checker
(called OrdRet, www.ordret.com), we are
targeting not dyslexics' text, but ordinary text, or
even pre-spellchecked text, with a lower error
ratio, and expect edit distances between error and
correction to be lower than for dyslexics.

1 This stage disambiguates part of speech and
morphology, but uses syntax only implicitly, avoiding
the stricter disambiguation forced by the subsequent
function-assigning syntax module.
2 A public version of the tagger is accessible for
teaching and research through SDU's VISL project
[visl.sdu.dk/visl/da/parsing/automatic/]
3 In the correction menu shown to the user, this will
then be the number-one suggestion. The other
readings will be "resurrected" and appended in the
order of their original spellchecker ratings.

Therefore, we were able to use stricter similarity
thresholds, resulting in shorter suggestion lists,
less ambiguity for the tagger, and more cases
with the correct suggestion as first alternative.
Fig. 1 illustrates the interplay between the core
spell-checker module, DanGram's morphological
analysis and disambiguation and the error
mapping CG module. Simplified output
examples for the individual modules are shown
in rectangular text boxes4.

Fig. 1: System architecture

4 The literal translation of the Danish example
sentence is "In Danish media hears one often about
these UN initiatives." R:... -expressions contain
(ambiguous) correction suggestions. V=verb,
INF=infinitive, AKT=active, PROP=name, N=noun,
P=plural, @vfin=finite verb, @comp=compound error

2.3 Morphological recognition

An important difference between our target data
and dyslectics texts is lexical variation and word
complexity. Thus, we found a much higher
percentage of long words and compounds, and
there was a higher risk of an "unknown" word in
fact being correct rather than an error. Therefore,
we extended the compound analysis module of
DanGram as well as its heuristic, endings-based
morphological word guesser. We also added a
confidence tag for "good compounds", based on
length and frequency of the compound parts. In
the current version, these alternative analyses
compete with possible error corrections and their
tags are used to make CG rules more cautious,
avoiding false positive classification of
compounds or rare technical terms as errors.

Finally, we also wished to accommodate
systematical errors made by immigrants or
foreign language learners in Denmark, in
particular endings errors due to category
confusions5 (e.g. noun gender, regular past tense
inflection) or special orthographic rules, such as
e-elision for inflected -el/er/en-words ('ministere'
-> 'ministre', plural of 'minister'). We therefore
modified DanGram's analysis module to
recognize and mark this kind of error. Together
with the phonological and grapheme confusion
tables used by the word similarity module, these
cases cover many of the non-semantic L2
learner error types described by Hammarberg
and Grigonytè (2014) for Swedish6, though
obviously not code switching or compounding
loans. In order to effectively address the latter,
L1-specific rule modules or substitution lists
would have to be added.

2.4 Context-based error mapping

The next stage of the system is a dedicated error-
driven Constraint Grammar (ca. 1450 rules) that
maps grammatical errors on otherwise correctly
spelled words. While DanGram is basically
reductionist and removes (focuses) ambiguity,
the error-CG adds information. For instance, the
common Danish '-e/-er' verb-error (infinitive vs.
5 Unlike English, Danish has 2 grammatical genders
and two regular past tense endings, which do not
follow strict patterns, and have to be learned together
with the word.
6 This study uses the ASU learner corpus. No
corresponding data exist for Danish, but since the two
languages are closely related, the inventory of error
types can be assumed to be the same or at least very
similar.

Classical
Spellchecker

unknown
word

Fullform
lexicon

Phonetic
lexicon

Error
pattern

list

Weighted list with
similarity type

and num. value:
w92= written
s88 = spoken

f90 = frequency
ð100 = list-based

compound
analysis

fusion / splitting

grapheme/phoneme
substitution rules

Morphological
analyzer

CG
Error mapper
Error disam-

biguation

CG
DanGram

PoS/morph. CG
DanGram

Syntax

inflection
compounds
heuristics
systematic

errors

100.000
lemma
lexicon

Valency &
semantic tags
Agreement

 suggestion 1 - reading 1a
 suggestion 1 - reading 1b
 suggestion 2 - reading 2a
 ...
 dangram reading "as is"

I danske medier ...
høre V INF AKT @vfin
... man ofte om disse ...
FN PROP @comp-:-
indsater
 R:indsatser (f77) N P
 R:indsætter (s91) V PR
 R:indsatte (w100) N P
 R:indfatter (81) V PR

I danske medier ...
høre <R:hører> <dg> @vfin
... man ofte om disse ...
FN <org> <dg> @comp-:-
indsater <R:indsatser> <dp> @error

present tense, cf. example (b)) can often be
resolved by checking local and global left
context (infinitive marker, auxiliaries, subject
candidates). Likewise, gender and number errors
can be checked by noun phrase context
(examples a,d). Suggestions are mapped7 as @-
tags in the style of CG syntactic tags, e.g. @pl
(plural), @vfin (finite verb) or @utr (common
gender). In the examples below, rule conditions
are paraphrased in parentheses. DanProof's last
stage generates corrected wordforms <R:....>
from these inflectional tags, and in Word's
graphical user interface, the tags are "translated"
into error types and expanded with explanations
and examples (see footnote8 for translations).

(a) Det er også disse menneske (@pl
<R:mennesker>) der mener ... (noun
phrase agreement: plural determiner)

(b) 25 procent af alle voksne danskere leve
(@vfin <R:lever>) i en kerne (@comp-)
familie. (subject candidate to the left,
absence of infinitive-triggering contexts
such as auxiliaries)9

(c) Hun besøgte barndoms (@comp-)
veninden. (indefinite singular noun in the
genitive, immediately preceding definite
noun)

(d) Det var en stort (@utr <R:stor>)
oplevelse. (noun phrase agreement)

(e) Bægeret var fuld (@sc-neu <R:fuldt>).
(long-distance agreement between subject
and subject complement)

(f) Det har vært (@error <R:været>). ('været'
V wins over 'vært' N after auxiliary.

(g) Hun ønsker ikke og (@:at) hjælpe.
(infinitive to the right, infinitive-triggering
verb to the left)

Of course, not all errors are based on wrong
inflection. Thus, the rules also mark casing,
sentence separation, apostrophe and hyphenation

7 Possible multiple mappings will be sorted out by
subsequent contextual disambiguation rules.
8 (a) It is also these people that think ..., (b) 25
percent of all adult Danes live in a nucleus family, (c)
She visited [the/her] childhood friend, (d) It was a
great experience, (e) [The] cup was full, (f) It has
been ..., (g) She does not want to help
9 In the real rule, there are 5 different negative
contexts, for safety, as well as various other
conditions.

errors, as well as word insertion and deletion,
and fusion/splitting errors (cf. @comp- in
example (b-c), all of which are not normally
treated - or not treated well - by commercial
spell-checkers. Finally, individual word
substitution rules are added in a contextual way,
where general, list based suggestions would have
been too risky. While OrdRet only used tags for
this (e.g. @:at in example (g)), we are also using
APPEND rules for the same purpose in
DanProof. APPEND rules are a relatively new
feature in CG, implemented in the CG-3
compiler (Bick & Didriksen 2015), and add
complete new reading lines after morphological
analysis. Thus, we can include new tags, such as
PoS and inflection, for the correction word and
allow the disambiguation rules to compare the
suggested form to the original one with regard to
context compatibility.

One problem with inflectional error mapping is
DanGram's disambiguation, which may well
discard correct forms for the sake of erroneous
ones if the context also contains erroneous forms.
Thus, it may not be possible to re-map a finite
verb as infinitive, because the same context that
would allow the error-CG to do this, may have
led DanGram to discard the verb-reading
altogether if the word form as such (or any of its
correction suggestions) was, say, a noun or
adjective. Therefore, the safest error-mapping
rules are run twice – both before and after
DanGram. As "before"-rules they may apply
while the necessary context is still in place,
avoiding disambiguation interference. Run again
as "after"-rules, the same rules may capture other
necessary contexts that have been made safe by
DanGram in the meantime, allowing the rules
find and mark further errors.

Finally, there is a second, syntactic run (5,000
rules) of DanGram and a third round of error-
mapping exploiting the syntactic tags, as does the
subject complement rule in example (e) - as
opposed to the "easier" noun phrase agreement
error (d).

2.5 Pedagogical comments on error types

A major difference between OrdRet and
DanProof, besides the target group adaptations,
is the fact that the latter makes use of its error
classification for pedagogical purposes. Each
error that is not just a simple spelling error
comes with a (short) definition and a (longer)
explanation, as well as examples and links to

external material such as on-line exercises and
text book excerpts. All in all, about 35 error
types are covered.

Error type @inf
Definition infinitiv (navnemåde)
Explanation Du har sandsynligvis tilføjet et overflødigt

-r til en infinitiv, der dermed bliver til er
finit verbum. En vigtig regel er at et
verbum (udsagnsord) er en ubøjet infinitiv
(uden -r), hvis der til venstre står 'at' eller
vil/ville, kan/kunne, skal/skulle, bør/burde.
Omvendt ...

Examples De begynder at danser [danse]
'Han forstår engelsk' - 'Han kan
forstå engelsk'

Links En mulig øvelse er R-problemer -
verber, samt VISL's grammatikspil
Balloon Ride.

Table 1: Pedagogical comment fields (see footnote10

for translations)

An added advantage from making error types
transparent to the user, rather than just marking
words as "wrong", is that the user can actively
switch certain error types on or off. For a good
speller with a good grasp of grammar, for
instance, a high proportion of grammatical error
markings will be false positive, while a lone
false positive may be a fair price for a bad speller
to pay for ridding himself of a dozen errors on
the same page. Having an on/off setting for
grammatical errors on a whole, or individual
ones, remedies this problem. Similarly, some
users employ uppercasing for emphasis, or prefer
English-inspired apostrophes for names, and if
this is a conscious decision, marking it only
antagonizes the user.

A known problem with Danish orthography is
that erstwhile errors often become allowed
forms, and may even become the only allowed
form, if sufficiently many people make the error.
On the other hand, many individuals stick to the
originally learned spelling over a life time.
Therefore, DanProof adds markers (<frequent>,
@green) for "wrong but widely used" forms,
10 Explanation: You have probably add a superfluous
-r to an infinitive, thereby turning it into a finite verb.
An important rule is that a verb is a non-inflected
infinitive (without -r), if the words 'to' or 'will/would',
'can/could', 'shall/should' can be found to the left.
Conversely, ..., Examples: The begin to dances
[dance]; He understands English - He can understand
English; Links: A possible exercise is R-problems -
verbs, and VISL's grammar game Balloon Ride

making possible an on/off-switch for "strict"
spelling errors only.

2.6 The graphical user interface

DanProof has a graphical user interface
integrated into Microsoft Word, with side bar
fields for error-marked paragraphs and dynamic
comment fields. In the main text window,
optional colored underline marking can be
activated, mimicking Word's own "correct
spelling while writing" mode.

3 Evaluation

To evaluate the performance of DanProof, we
looked for texts that would have some errors but
not as many as dyslectics' texts, and not as few as
published texts. High school exam texts seemed
to be a good compromise and we decided to use
Danish high school exam essays by Greenlandic
speakers (Bæk et al. 2009). The essays (6632
words) were analyzed with DanProof and error
markings inspected and corrected manually. In a
second round of inspection false negatives were
added, i.e. errors the system hadn't found. The
texts did contain both ordinary spelling errors11

and grammatical errors, but also many confusion
spelling errors, i.e. errors where a word is
replaced by another (wrong) word, but with the
correct spelling (e.g. 'det' -> 'de'). We therefore
computed performance at four different levels:

 All error markings
 Spell: Only spelling errors, excluding

grammatical errors, but including
compounding errors (fusion/splitting),
hyphen and case

 Lex: Same as Spell, but not counting false
positives if the word is not listed in
Retskrivningsordbogen (e.g. 'fucked', 'adj')
and not counting false negatives if the
word does exist in Retskrivningsordbogen
(e.g. 'da' [dag], 'single' in compounding
errors)

 Classic: Same as Lex, but words are
counted as error-marked, if DanProof
marked them as unknown, yet feasible
compounds

11 This is not always the case nowadays because
students use Word's list-based spell checker while
writing, so students will change an un-accepted word
until it matches an existing word - leaving only
confusion errors, compounding errors and
grammatical errors.

Recall Precision F-score
All 65.1 91.7 76.1
Spell 86.8 90.8 88.6
Lex 93.7 96.7 95.2
Classic 100.0 98.3 99.1

Table 2: Error detection performance, school essays

As can be seen from the table, DanProof is very
reliable if used as a traditional spell-checker
(Classic and Lex), even when the more difficult
task of compounding correction is added for
otherwise correctly spelled words (Spell). With
the full range of error types, precision is still
acceptable (even a little higher than for "Spell"),
but recall is lower - DanProof misses out on
about 1/3 of all errors of the addressed type.

Qualitative error analysis of false negatives
showed that particularly difficult error types,
recall-wise, are @insertion (i.e. missing words)
and deletion (@nil). Confusion without
grammatical motivation (@:...) was rarely
spotted, but this is probably data-specific for the
Greenland setting. Thus, 1/3 of the cases were
confusion of the subject pronouns 'det' and 'de'
which are hard to distinguish contextually, plus
cases outside of DanProof's current scope, e.g.
idioms and choice of preposition.

Recall Precision F-score
@error (47) 83.0 95.1 88.6
@upper (28) 100.0 96.6 98.3
@comp- (25) 76.0 100.0 86.4
@comp-:- (22) 90.9 95.2 93.0
@nil (14) 28.6 100.0 44.5
@insert (12) 8.3 100.0 15.3
@vfin (9) 66.7 85.7 75.0
@: (35)
e.g. @:de (10)

5.7 50.0 10.23

@pl (8) 62.5 83.3 71.4
@utr (7) 100.0 87.5 93.3
@def (4) 75.0 60.0 66.7
@new (3) 100.0 60.0 75.0
@neu (6) 16.7 100.0 28.6
@idf (4) 25.0 50.0 33.3
@lower (4) 75.0 100.0 85.7
@inf (4) 100.0 100.0 100.0

Table 3: Error type-specific performance

A direct comparison with OrdRet is difficult
because of the different target domains, and
because the OrdRet evaluation by Bick (2006)
evaluated correction suggestion priority lists,

rather than simple matches, and weighted
correction suggestions with their inverse rank in
the list. If a weighted score is approximated by
assigning a weight of zero to all cases where the
correct form was not matched, DanProof does
get better scores for its essay texts than OrdRet
had for its dyslectics texts12, although OrdRet has
a "performance reserve" because of the presence
of correct suggestions at lower list ranks.

R P F-score
All-weighted (DanProof) 61.6 86.7 72.0
All-weighted (OrdRet) 43.0 58.0 49.4

Table 4: Comparison OrdRet - DanProof

As a real-life control, we used MicrosoftWord
2007 on the same essays, and found considerable
differences, both in scope and performance. First
of all, Word does not find compounding errors
and can't recognize names, the former creating
false negatives, the latter false positives. It does
even worse than DanProof on deletion and
insertion, and it marks relatively few
grammatical errors, albeit almost without false
positives. In a direct comparison, this leads to
very low - and unfair - scores13 for the "all"-
evaluation due to low recall. For "spell" and
"lex", however, Word still finds considerably
fewer errors than DanProof. Precision is better
without counting names, but is still hampered by
the missing compound analysis (e.g.
kønstradition [gender tradition], boginteresse
[book interest], livsrygsæk [life backpack],
middagsræs [noon rush]).

Recall Precision F-score
All 20.8 54.6 30.1
All-nonprop 20.8 71.6 33.1
Spell 75.0 51.1 60.8
Spell-nonprop 75.0 70.3 72.6
Lex 81.8 54.9 65.7
Lex-nonprop 81.8 77.6 79.6

Table 5: Word2007 performance

Once DanProof recognizes a word as wrong, the
assigned error type is usually reliable (95.7% for
"all", 96.6% with "spell" settings). For the

12 A more direct comparison by running both systems
on the same data was not possible because the original
OrdRet setup could not be reconstructed.
13 On the other hand, Word marked some simple
spacing and punctuation errors that were not in the
scope of our DanProof test.

correct error type markings, the suggested new
word form was correctly chosen in 95.8% of
cases, independently of "all" or "spell" settings.
Word had a correct suggestion in 84.4%, and this
was offered as the first choice in 68.9%,
indicating that DanProof's context-based
prioritization does make a difference.

Since the density of errors to be found is very
much dependent on genre and text authors, an
alternative measure of "experienced
performance" is the number of false positives or
false negatives per page14. Thus, for our essays,
DanProof had 0.7 false positives per page with
the 'all'-settings, and 0.4 false positives per page
with 'spell' settings. For false negatives, the
numbers were 4 and 0.4, respectively.

DanProof uses the tag @new, if it deems a word
correct, but has done so using productive
compound analysis. Conversely, @check! is used
for words that are not "safely wrong" because no
correction alternative was found, but that are
more likely to be wrong than @new, because no
productive analysis was found either. In a
178,000 word newspaper corpus chunk from
Korpus2000 (...), @new was used 347 times, and
was wrong on only 2 occasions (99.4%
accuracy). Confronted with the same word list ,
Word2007 had false positives in 54.2%,
evidently due to not having a compound analysis
module. @check! was used 120 times and
proved to be a very mixed category, with 23.3%
spelling errors, 17.5% foreign words and 8.4%
names (mostly lowercase brands,
pharmaceuticals etc.), i.e. less about half were
ordinary Danish words. Word2007 accepted 1/3
of the latter as correct, indicating DanProof
would profit from a larger lexicon to supplement
its compound analysis. Still, in a hybrid setup,
given that the @new category is safe and 3 times
bigger than the @check category, and that Word
rejected half of the former, Word would probably
benefit more from DanProof input than vice
versa. In any case, the two systems' strengths
seem to be in different areas, which would make
hybridization, maybe with an arbiter system, a
good idea.

14 Lingsoft, for instance, claims less than 1% false
positives per page for their products
[http://www.lingsoft.fi/en/506, 19 Apr 2015]

4 Conclusion and outlook

We have described how a Constraint Grammar
environment can be used to enhance a classical
spell-checker module in a number of ways:

• weighting of correction suggestions for
non-words and dubious words

• reduce the number of false positives
through compound analysis and name
recognition

• mapping and classification of
grammatical errors

• syntactic validation of split compound
recognition

For its target domain, the system achieved better
recall and precision than its predecessor system
(OrdRet) and outperformed MicrosoftWord's
standard spell-checker, not least with regard to
false positive non-word marking, split
compounds and grammatical error-typing. For
correctly typed errors, the right correction
alternative was chosen in over 95% of cases.
However, performance for grammatical,
conditioned errors is not on par with the system's
accuracy for classical spell-checking, and should
be improved.

Transparent error-typing and confidence grading
(@error, @new and @check!) allowed us to add
pedagogical comments, but at the time of writing
graphical integration into MicrosoftWord was not
finished, and should be followed up by
classroom testing and teacher feed-back, possibly
integrated with existing didactical tools.

While word-based grammatical errors such as
agreement errors and the so-called -r errors are
well-covered, further syntactical error types
should be added, such as word order errors and
comma-checking. The latter is a sensitive, almost
political, issue in Denmark, and should definitely
be part of a Danish proofing suit, but is being
addressed by a parallel R&D project, and
therefore not evaluated here.

References

Antonsen, Lene. 2014. Evaluation of a North-Saami
FST-Based Spellchecker Program. Presentation at
SLTC 2014
[http://divvun.no/workshops/NorWEST2014/prese
ntations/Antonsen.pdf]

Bick, Eckhard. 2001. En Constraint Grammar Parser
for Dansk. In Widell, Peter & Kunøe, Mette (eds.),
8. Møde om Udforskningen af Dansk Sprog, 12.-
13. oktober 2000, p. 40-50. Århus: Århus
University.

Bick, Eckhard. 2006. A Constraint Grammar Based
Spellchecker for Danish with a Special Focus on
Dyslexics". In: Suominen, Mickael et.al. (ed.) A
Man of Measure: Festschrift in Honour of Fred
Karlsson on his 60th Birthday. Special Supplement
to SKY Jounal of Linguistics, Vol. 19. pp. 387-396.
Turku: The Linguistic Association of Finland

Bick, Eckhard & Didriksen, Tino. 2015. CG-3 -
Beyond Classical Constraint Grammar. In: Beáta
Megyesi: Proceedings of NoDaLiDa 2015, Vilnius.
pp. 31-39. Linköping: LiU Electronic Press

Birn, Jussi. 2000. Detecting grammar errors with
Lingsoft's Swedish grammar checker. In Nordgård,
Torbjørn (ed.) NODALIDA '99 Proceedings from
the 12th Nordiske datalingvistikkdager, p. 28-40.
Trondheim: Department of Linguistics, University
of Trondheim.

Bæk, Jan & Elmose, Agnete & Olesen, Claus &
Hartmann, Peter. 2009. Evaluering af skriftlig
eksamen for Dansk i Grønland
[http://www.uvm.dk/Uddannelser-og-
dagtilbud/Gymnasiale-uddannelser/ Information-
til-censorer-paa-de-gymnasiale-
uddannelser/~/media/UVM/Filer/Udd/Gym/PDF11
/Proever_og_eksamen/Censorvejledninger_dansk_
maj_2011/110504_14.ashx] and
[http://www.iserasuaat.gl/fileadmin/user_upload/Te
st_files/Raad_og_vink_Groenland_2009.doc]

Carlberger, Johan & Domeij, Rickard & Kann, Viggo
& Knutsson, Ola. 2004. The development and
performance of a grammar checker for Swedish: A
language-engineering perspective. Natural
Language Engineering, 1 (1).

Hagen, Kristin & Lane, Pia & Trosterud, Trond. 2001.
En grammatikkontrol for bokmål. In Vannebo,
Kjell Ivar & Helge Sandøy (eds.) Språkknyt 3-
2001, p. 6-9, 47. Oslo: Norsk Språkråd

Hammarberg, Björn & Grigonytè, Gintarè. 2014.
Non-Native Writers' Errors - a Challenge to a
Spell-Checker. Presentation at SLTC 2014.
[http://divvun.no/workshops/NorWEST2014/abstra
cts/Hammarberg_Grigonyte.pdf]

Karlsson, Fred & Voutilainen, Atro & Heikkilä, Jukka
& Anttila, Arto. 1995. Constraint Grammar: A
language-independent system for parsing
unrestricted text, pp. 1-88. Berlin: Mouton de
Gruyter.

Pirinen, Tommi A. & Lindén, Krister. 2014. State-of-
the-Art in Weighted Finite-State Spell-Checking.
In: Proceedings of CICLing 2014.

Stymne, Sara & Ahrenberg, Lars. 2010. Using a
Grammar Checker for Evaluation and
Postprocessing of Statistical Machine Translation.
In: Proceedings of LREC 2010.

